The EDV-545-MD dual-module louver is engineered and tested to withstand extreme loads, debris impact, and cyclic fatigue associated with the severe weather effects of hurricanes (Miami-Dade County approval NOA No. 22-0118.04) while maintaining maximum water infiltration resistance at a minimum louver depth. The front (exterior) side of the louver features horizontal J-style blades for a pleasant architectural appearance. The (interior) side features vertical chevron blades which provide superior resistance to wind-driven rain. For installation, the EDV-545-MD offers a continuous angle. The EDV-545-MD is AMCA 540 and 550 listed, making it ideally suited for use in hurricane-prone and wind-borne debris regions as per the International Building Code.

Standard Construction

- **Material:** Mill finish 6005A-T6 extruded aluminum
- **Frame:** 5-3/8" deep × 0.081" thick (137 × 2) channel
- **Blades (Rear):** 45° × 0.05" (1.3) thick vertical chevron style
- **Blades (Front):** 45° × 0.08" (2) thick horizontal J style
- **Screen:** 1/2" × 0.063" (12.7 × 1.6) expanded and flattened aluminum
- **Mullion:** Visible
- **Minimum Size:** 12" × 12" (305 × 305)
- **Maximum Size:**
 - Single section: 60" × 96" (1524 × 2438)
 - Multiple section: Unlimited width × 96" (2438)

Options

- **Factory finish:**
 - High Performance Fluoropolymer
 - Prime Coat
 - Baked Enamel
 - Clear Anodize
 - Integral Color Anodize
- **Frame Options:**
 - 1-1/2" (38) flange frame
- **Installation Hardware**
 - Continuous angles
- **Alternate bird or insect screens**
- **Insulated or non-insulated blank-off panels**
- **Filter racks**
- **Head and/or sill flashing**
- **Burglar bars**

Ratings

- **Free Area:** [48" × 48" (1219 × 1219) unit]: 8.03 ft² (0.75 m²) 50.2%
- **Performance @ Beginning Point of Water Penetration**
 - Free Area Velocity: 1,250 fpm (6.35 m/s)
 - Air Volume Delivered: 10,038 cfm (4.74 m³/s)
 - Pressure Loss: 0.55 in.wg. (136 Pa)
- **Velocity @ 0.15 in.wg. Pressure Loss:** 666 fpm (3.38 m/s)
- **AMCA 540 (impact resistant, Basic Protection - Level D and Enhanced Protection - Level E) listed**
- **AMCA 550 (high velocity rain resistant) listed**
- **Miami Dade County:** NOA No. 22-0118.04 (Expires 2/17/27)
 - Approved to FBC TAS201-94, TAS202-94, TAS203-94 and TAS100(A)-95
- **Florida Building Code Approval (2020-FBC):** No. 41078
- **Design Load:** 100 psf

NOTE: Dimensions in parentheses () are millimeters. Information is subject to change without notice or obligation.
PERFORMANCE

Free Area (ft²) vs. Width (Inches)

<table>
<thead>
<tr>
<th>Width</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
<th>54</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.22</td>
<td>0.36</td>
<td>0.49</td>
<td>0.63</td>
<td>0.76</td>
<td>0.90</td>
<td>1.03</td>
<td>1.17</td>
<td>1.30</td>
</tr>
<tr>
<td>18</td>
<td>0.48</td>
<td>0.76</td>
<td>1.05</td>
<td>1.33</td>
<td>1.62</td>
<td>1.90</td>
<td>2.19</td>
<td>2.47</td>
<td>2.76</td>
</tr>
<tr>
<td>24</td>
<td>0.73</td>
<td>1.17</td>
<td>1.61</td>
<td>2.05</td>
<td>2.49</td>
<td>2.93</td>
<td>3.37</td>
<td>3.81</td>
<td>4.25</td>
</tr>
<tr>
<td>30</td>
<td>0.99</td>
<td>1.59</td>
<td>2.18</td>
<td>2.78</td>
<td>3.37</td>
<td>3.97</td>
<td>4.56</td>
<td>5.16</td>
<td>5.75</td>
</tr>
<tr>
<td>36</td>
<td>1.25</td>
<td>2.00</td>
<td>2.75</td>
<td>3.50</td>
<td>4.25</td>
<td>5.00</td>
<td>5.75</td>
<td>6.50</td>
<td>7.25</td>
</tr>
<tr>
<td>42</td>
<td>1.50</td>
<td>2.41</td>
<td>3.31</td>
<td>4.21</td>
<td>5.11</td>
<td>6.02</td>
<td>6.92</td>
<td>7.82</td>
<td>8.72</td>
</tr>
<tr>
<td>48</td>
<td>1.75</td>
<td>2.79</td>
<td>3.84</td>
<td>4.89</td>
<td>5.93</td>
<td>6.98</td>
<td>8.03</td>
<td>9.08</td>
<td>10.12</td>
</tr>
<tr>
<td>54</td>
<td>1.99</td>
<td>3.19</td>
<td>4.38</td>
<td>5.58</td>
<td>6.78</td>
<td>7.97</td>
<td>9.17</td>
<td>10.36</td>
<td>11.56</td>
</tr>
<tr>
<td>60</td>
<td>2.23</td>
<td>3.58</td>
<td>4.92</td>
<td>6.26</td>
<td>7.60</td>
<td>8.94</td>
<td>10.28</td>
<td>11.62</td>
<td>12.96</td>
</tr>
<tr>
<td>66</td>
<td>2.49</td>
<td>3.98</td>
<td>5.48</td>
<td>6.97</td>
<td>8.47</td>
<td>9.96</td>
<td>11.45</td>
<td>12.95</td>
<td>14.44</td>
</tr>
<tr>
<td>72</td>
<td>2.75</td>
<td>4.40</td>
<td>6.05</td>
<td>7.69</td>
<td>9.34</td>
<td>10.99</td>
<td>12.64</td>
<td>14.29</td>
<td>15.94</td>
</tr>
<tr>
<td>78</td>
<td>3.01</td>
<td>4.81</td>
<td>6.61</td>
<td>8.42</td>
<td>10.22</td>
<td>12.02</td>
<td>13.83</td>
<td>15.63</td>
<td>17.43</td>
</tr>
<tr>
<td>84</td>
<td>3.26</td>
<td>5.22</td>
<td>7.18</td>
<td>9.14</td>
<td>11.10</td>
<td>13.06</td>
<td>15.02</td>
<td>16.97</td>
<td>18.93</td>
</tr>
<tr>
<td>90</td>
<td>3.51</td>
<td>5.62</td>
<td>7.73</td>
<td>9.84</td>
<td>11.95</td>
<td>14.05</td>
<td>16.16</td>
<td>18.27</td>
<td>20.38</td>
</tr>
<tr>
<td>96</td>
<td>3.76</td>
<td>6.02</td>
<td>8.27</td>
<td>10.53</td>
<td>12.79</td>
<td>15.04</td>
<td>17.30</td>
<td>19.56</td>
<td>21.81</td>
</tr>
</tbody>
</table>

Water Penetration

AMCA defines the beginning point of water penetration as the free area velocity at the intersection of a simple linear regression of test data and the line of 0.01 ounces of water per square foot of free area measured through a 48” x 48” louver during a 15 minute period. The AMCA water penetration test provides a method for comparing louver models and designs as to their efficiency in resisting the penetration of rainfall under specific lab conditions. We recommend that intake louvers are selected with a reasonable margin of safety below the beginning point of water penetration in order to avoid unwanted penetration during severe storm conditions.

Beginning Point of Water Penetration = 1,250 fpm

Pressure Loss

Pressure loss tested in accordance with Figure 5.5 of AMCA Standard 500-L. Data corrected to standard air density.
PERFORMANCE

Wind Driven Rain Performance - AMCA 500L Wind-Driven Rain Test

<table>
<thead>
<tr>
<th>Wind Velocity</th>
<th>Rainfall</th>
<th>Airflow</th>
<th>Core Velocity¹</th>
<th>Effectiveness Ratio</th>
<th>Wind-Driven Rain Penetration Class</th>
<th>Discharge Loss Class²</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 mph</td>
<td>3 in/hr</td>
<td>10,591 cfm</td>
<td>984 fpm</td>
<td>100%</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>50 mph</td>
<td>8 in/hr</td>
<td>10,600 cfm</td>
<td>985 fpm</td>
<td>99.8%</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. Core area is the open area of the louver face (face area less louver frame). Core velocity is the airflow divided by core area. Test louver core area is 10.77 ft² (1 m²).
2. Discharge Loss Coefficient is calculated by dividing the louver’s actual airflow rate by the theoretical airflow rate for an unobstructed opening. The higher the coefficient, the lower the resistance to airflow.

Attributes

Supplemental Options