

Marketing **Profile**

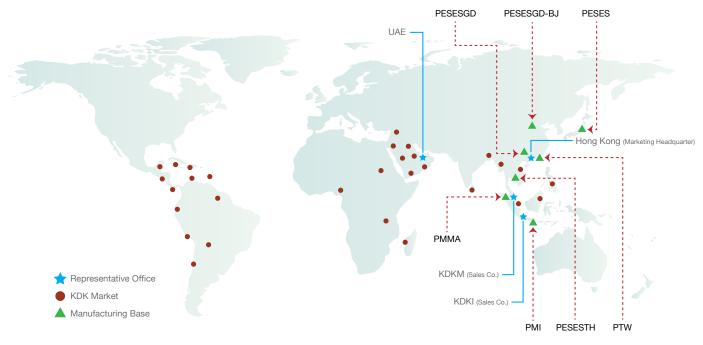
TABLE OF CONTENTS

1.3	Compan	v Mission
	00110001	,

- 1.4.....Marketing Map
- 1.5.....IAQ (Indoor Air Quality) Solutions
- 1.6....Important Milestones
- 1.8....Ventilation Equipment
- 1.10.....Home Appliance & Business Solution
- 1.12.....Event Highlights
- 1.13.....Corporate Social Responsibilities
- 1.14....Our Supports

COMPANY MISSION

To contribute to the society by improving Indoor Air Quality in homes with our premium products and professional industry expertise.


Kawakita Denki Kigyosha Founder, KDK Company

MARKETING MAP

KDK is the short form for Kawakita Denki Kigyosha which was founded since 1909 in Japan. Started from "Typhoon Type Electric Fan", the Company has been manufacturing a wide range of air-related products, including ventilating fans, ceiling fans, etc. that contributes indoor air quailty (IAQ) solutions to its customers. For a century, KDK has established its business in various countries, building its reputation and brand value in the minds of its customers.

For a century, KDK has established its business in various countries, building its reputation and brand value in the minds of its customers. Moving forward, in addition to continuous development in existing markets, we will explore new business in potential markets throughout other fast-growing regions.

Market Prospect

Hong Kong

Hong Kong is a global business city and located in the heart of Asia, operation office of oversea marketing is set up there to play a vital role between markets and factories.

South East Asia

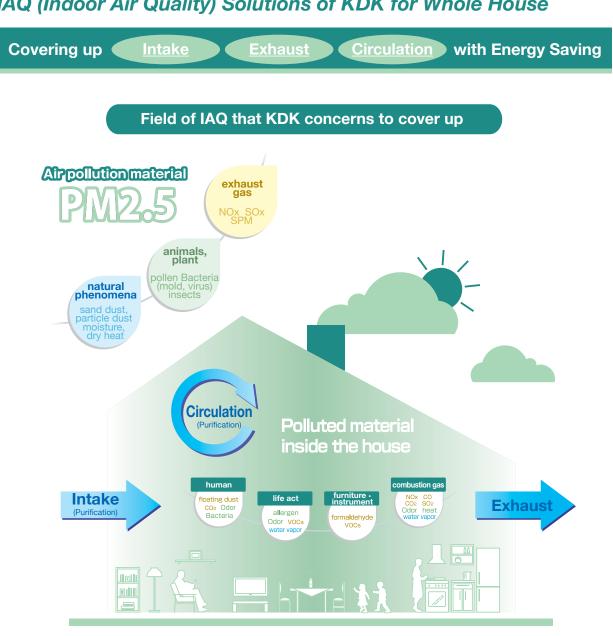
South East Asia is one of the most important regions for KDK, the businesses have started in some markets for more than 60 years. The region continues its steady growth in upcoming decades with expected rising demand. In response to the expanding markets, KDK established its sales company in Indonesia and Malaysia in 2001 and 2002 respectively.

Middle East

Having over 56 years of history in the Middle East, we have set up our respresentative office in Dubai 19 years ago, that allowed us to work closely together with our business partners to provide high level of service to customers.

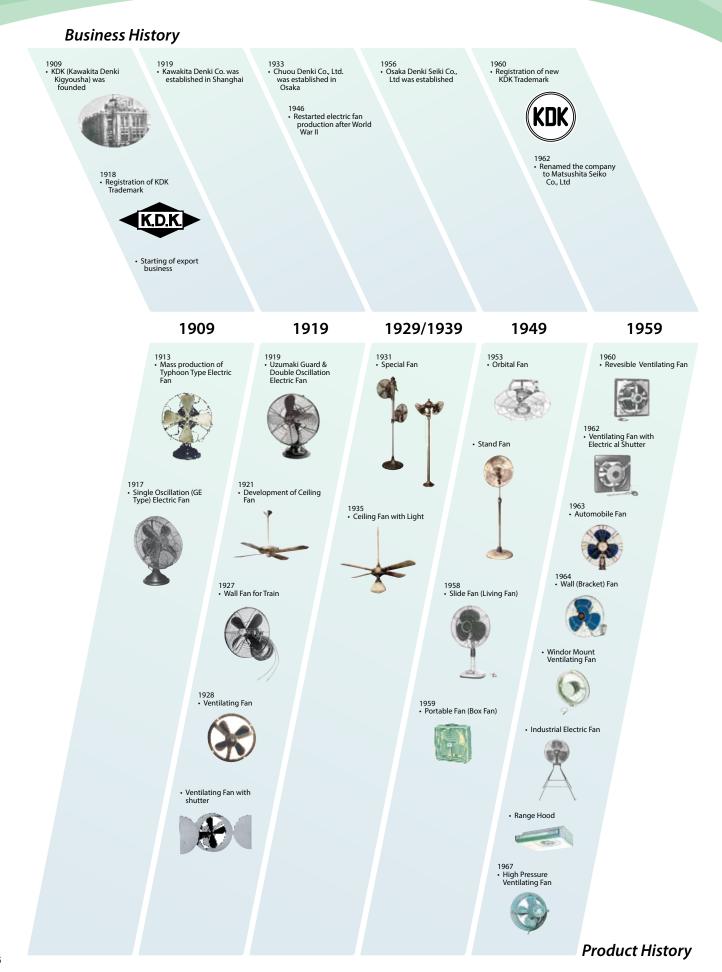
Latin America

Latin America is one of the regions in which KDK's overseas business has been running for more than 58 years. In order to further expand the scale of business and to provide well-quality services to our customers, a representative office was set up in Mexico in 2013.


Africa

As one of the potential markets, we collaborate power from the leading customers in Africa for generating business opportunity.

Air is the substance which human being take the most into the body as compared with food and water. Moreover, we spend more than 70% of our time indoors that IAQ (indoor air quality) is essential to our daily life.


KDK recognizies the importance of IAQ, we has been developing the technologies, solutions and products that can contribute the benefits to our living environment.

IAQ (Indoor Air Quality) Solutions of KDK for Whole House

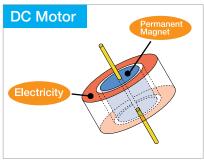
Intake	Circulation	Exhaust
Not To Take In	Healthy / Comfortable Airflow	Reduce / Eliminate
Protect unnecessary material from the outside • Energy recovery ventilator • Supply filter unit • Pipe fan	Inhibit bacteria • Celling fan • Air purifier • Humidifier • Dehumidifier • Electric fan	Exhaust unnecessary material to the outside • Ventilating fan • Range hood • Bath dryer • Pipe fan • Energy recovery ventilator

IMPORTANT MILESTONES

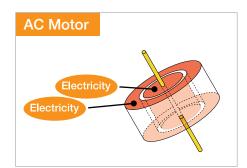
VENTILATION EQUIPMENT

To provide more pleasant and comfortable living spaces for people around the world, we will continue to develop a complete portfolio of ventilation products and systems for various application.

By combining our knowledge and experience, a diverse range of innovative ventilation products have been introduced to create high quality living environment, while offering value-added benefits to our customers.


Technology Highlight

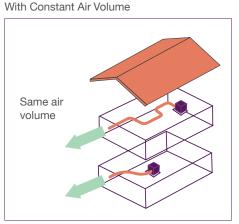
DC (Direct Current) Motor


DC Ceiling Mount Ventilating Fan

With customers becoming more environmentally aware than before, the demand for energy efficient product is rising. KDK has developed an AC (Alternative Current) direct-input DC (Direct Current) motor with unprecedented performance characteristics.

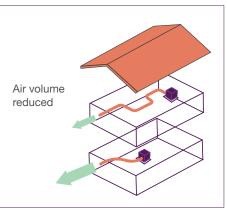
In conventional DC ventilating fan motors, the power and drive circuits are separated from the motor. The newly designed KDK motor encloses all electronic circuits in a molded casing that enhances energy efficiency and offers a longer operational life. Its energy efficiency is increased up to 96% as compared with conventional AC motor.

Stator uses electrical magnet while rotor uses permanent magnet



Stator & rotor both uses electrical magnet

Constant Airflow


Ceiling Mount Ventilating Fan

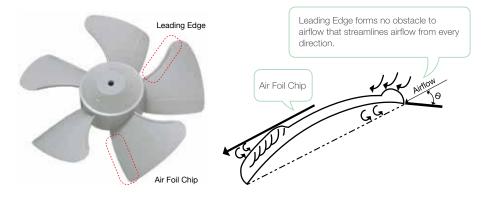
Currently, various models would be selected to fit different locations in your house to overcome static pressure induced by duct length and elbows. By using new technology, our latest product can fulfill airflow requirements regardless of the factors that may increase static pressure. When the fan encounters static pressure, its speed is automatically increased to ensure the rated airflow is achieved.

Air volume from same model with different duct length are same

Air volume from same model with different duct length are different

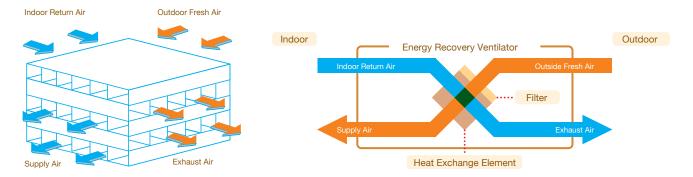
Low Noise Design Ceiling Mount Ventilating Fan

These fans adopt distinctive design of "Resonance-Noise-Absorption Structure". It can minimize the transmission of noise from the blower to exterior, reducing the operation noise to incredibly low levels and create a tranquil and silent environment for you.


With the "Double Orifice" Structure, noise is effectively absorbed and reduced between the double orifice and casing.

Advanced Blade Design

Wall / Window Mount Ventilating Fan


The blade design applies advanced aerodynamic principle that minimizes any obstacles against the airflow. Air Foil Chip is to reduce turbulence at rear edge, and curvature of front edge was improved for smooth airflow that minimizes fan noise as well.

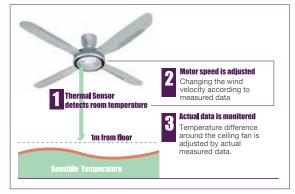
Heat Exchange Technology

Energy Recovery Ventilator

Temperature differences between exhaust and intake air during balanced ventilation will increase the cooling load during hot seasons and the heating load during cold seasons. With our heat exchange mechanism, heat and moist are exchanged between the exhaust and supply's air stream. In summer, outside air supplied into the room is cooled down to a temperature close to that of indoors and vice versa in winter. It ensures energy saving by this exchange process.

VENTILATION EQUIPMENT

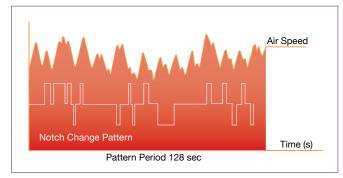
In response to the rapid growing demand for indoor air quality (IAQ), KDK, as a leading provider, has developed a full spectrum of products to satisfy the various needs and requirements of customers.


By applying our cutting edge technologies, we are able to enrich people's lives with improved indoor air quality through developing a variety o products.

Technology Highlight

Auto Speed Adjustment by Temperature Sensor

Ceiling Fan / Electric Fan

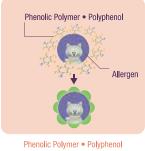

Equipped with thermal sensor, auto mode can detect temperature changes and control the fan, generating the most comfortable air flow.

Depending on the room temperature, Auto Mode controls the fans to generate the most comfortable air velocity to human body.

1/f Yuragi Ceiling Fan / Electric Fan

Our sophisticated technology, the 1/f Yuragi on the Electric Fan, varies air velocity and simulates the pattern of natural breeze, bringing people a sense of refreshment and comfort. Incorporated with human-centered technology, the rhythm also maintains your external body temperature and keeps you in a relaxing physical condition.

Speed notch toggles based on 1/f Yuragi pattern


Super alleru-buster

Electric Fan / Air Cooler / Air Purifier / Dehumidifier

Some of our Indoor Air Quality Appliances, such as Electric Fans and air purifier, are equipped with anti-bacteria filters which consist of three features, Super alleru-buster, Anti-Bacteria Emzyme and Green Tea Catechin. These three features can inhibit 99% of allergens and eliminate bacteria, keeping your room fresh and clean.

1/F yuragi

Absorb and inhibit allergens

nanoe™

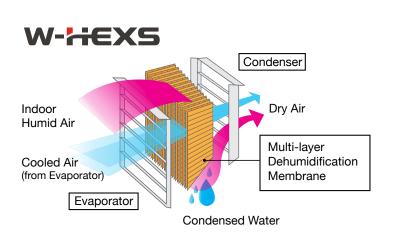
Air Purifier / Electric Fan

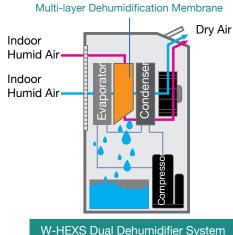
nance[™] is long-life micro particies created from water, it can penetrate into fabrics thoroughly and reach in far corners to inhibit pollutants. As the ions are wrapped in water moiecules that the effect is long-lasting. Furthermore, nance[™] is generated from condensed moisture in the air that water replenishment is not required.

Mist

Air Cooler

Differing from typical evaporation, KDK mist technology lower room temperature more efficiently. Small amount of water is pumped up inside the vessel by the rotation of the rotor and silky mist is generated by the crashing ring. The mist is evaporated and blown out of the vessel by airflow for absorbing warm air energy.


Size of mist particles generated by KDK mist technology is 6 times smaller than steam particles and 1000 times smaller than the cooling particles from typical evaporation.



W-HEXS (Dual Dehumidifier System)

Dehumidifier

The multi-layer dehumidification membranes of W-HEXS enable additional air inlet direction, by which cool and hot air flow across for condensation. This process significantly improves power efficiency of dehumidification as compared with single air flow of conventional dehumidification system.

EVENT HIGHLIGHTS

To introduce KDK products and listen to the voices of customer, we have participated different exhibition and conventions all over the markets.

1) WORLDBEX Exhibition, Philippines (2019)

2) Arechtict EXPO, Sri Lanka (2019)

3) BIG 5 Expo, UAE (2018)

4) Construction Expo, Sri Lanka (2018)

5) KDK Partnership Celebration, Sudan (2017)

6) Mega Expo, Mynamar (2017)

7) BIG 5 Expo, UAE (2017)

8) KDK Showroom Opening Ceremony, Mynamar (2016)

9) Build-4-Asia Building Exhibition, Hong Kong (2016)

11) AHR Expo, Mexico (2016)

12) VIET BUILD, Vietnam (2016)

CORPORATE SOCIAL RESPONSIBILITIES

As a company with Corporate Special Responsibility at the core, we will never forget to set the environmental protection as our priority goal to achieve besides product innovation and customers satisfaction.

Under normal circumstances, KDK's products are not mandatory to comply with the Restriction of Hazardous Substances (RoHS) regulation for their markets. Nevertheless, we recognize our responsibility to the society and therefore, commit ourselves to conforming to the RoHS requirements. We have invested a lot of resources and implement such pro-environmental policy. In 2006, we were proud to announce that all our products follow the RoHS requirement.

In addition, KDK has demonstrated its commitment to providing quality air to the environment, and was finally certified under the standards of ISO14001 Environmental Management and ISO9001 Quality Management.

Our care for the Earth has been proven by the newly-launched products or parts, such as DC motor, Auto Mode for ceiling fan, HP motor, etc. They are characterized by functions that help enhance energy conservation.

6	CERTIFICATE TE IN	1	CERTIFICATE OF AD
-	*****	0	
	Harrison Die Anderen Berg Berg Die 148 Harrison die Antonie Harrison die Antonie Harr	100	And and the local set of the local set o
	Margin and an owned of		The Boost Property -
	AMARTING		Intribution in the local day
	and the second s		40 400 - Jan
	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		2-25
	Different an one of the second	1	River and American Street of Streeto

ISO9001 Certificate

ISO14001 Certificate

Clarity Event, Vietnam (2017)

In the age of information, we understand the importance of information security. We have acquired ISO27001, the Information Security Management in 2009. It further shows our commitment to protecting the right of our customers.

In response to our commitment to contributing the society, KDK also involves in a wide scale of CSR-related activities that builds close relationship with local communities around the world.

OUR SUPPORTS

Web Communication

To cope with the rapid development of worldwide network, KDK web site has been launched to provide a platform for us to communicate with our customers worldwide, and in an effective manner.

Product Selection Program

This program provides a tool for customers to select applicable models of ventilation products by simply inputting the required criteria.

The program can be accessed via KDK homepage or DVD.

100.000										100
									-	_
-		_				1.4	_			
								-		
-	100									
Contrast Sec	100				_					_
distant log	a. 8 maan	. A sich	- 1	Same a	1 m					
Par Dawn		1.0		W						
				20.1						
1.14				100						
					104	-	-	C) [2	halles	-
in succession	-	-	-	in succession in the local division of the l	-	-		-	-	
1.000		_	1000		-	198.	_	Adapted.		
1	(State of a							1.000		
1	and the second second	-	200			**	14	1.000	100	1.00
	intraction 4		410			10		1.000	74.75	
						14.	- 64	-	100.00	1.00
-	(antiplicate)									
1	Langertan .	2	- 22					1.00		
1	Conception of Co	3	-	-	2	2	5	27	2.5	1
		1	10.00	-	ł	-	ŝ	12	33	

Product Selection DVD

Home Ventilation

With this animated program, the customers can understand the likely sources of air problems and the solutions in a house.

Product Seminar / Training

To further enhance our value as a leading provider of indoor air quality products, we continuously provide various types of seminar and training to our business partners so the highest standard of the services can be maintained.

Product Index

Page Number Content

2.1 - 2.3	Product Overview
2.4 - 2.11	Air Moving Equipment
2.4	Compact Axial Fan
2.7	Mini Sirocco Fan
2.9	Accessories (Vent Cap & Pipe Hood)
2.10	Roof Ventilator
2.11	General Information
2.12 - 2.16	Energy Recovery Ventilator
2.12	Standard Series
2.15	ERV Accessory & Filter Box
2.16	Specification Summary
2.17 - 2.25	Ceiling Mount Ventilation Fan
2.17	Super Quite Series
2.21	Standard Series
2.22	DC Motor Series
2.22	Metal Series
2.26 - 2.31	Cabinet Fan
2.26	Single Phase Series
2.30	Three Phase Series
2.32 - 2.37	Industrial Ventilation Fan
2.32	High Pressure Series
2.36	Shutter Series
2.38 - 2.48	Wall Mount Ventilation Fan
2.38	Filter Series
2.39	Automatic Shutter Series
2.42	Automatic Shutter Louver Series
2.44	Reversible Series
2.46	Reversible Louver Series
2.48	Metallic Series
2.49 - 2.52	Window Mount Ventilation Fan
2.49	High Pressure Deluxe Series
2.50	Electric Shutter Series
2.51	Automatic Shutter Series
2.52	Cord-operated Shutter Series
2.53 - 2.58	Specification Summary
2.59 - 2.60	Air Curtain
2.59	Cross Flow Type
2.60	Sirocco Type

PRODUCT OVERVIEW

Wall Mount Type

Product Features

- AC motor with thermal cut-off
- Fan size (L×W×H)mm: 170×170×99 402×409×128mm
- Capacities: 75 1200 m³/h
- IPX4
- Insulation class: E
- Material: metal (Aluminum) /plastic (ABS)
- Type: bathroom series/filter series(kitchen)/automatic shutter series/ automatic shutter Louver series/reversible series/reversible Louver series/metallic series
- IEC standard compliance, GSO certified, ESMA, KUCAS, SASO, SONCAP
- Models licensed to bear the AMCA certified seal: 15AAQ1, 20AUHT, 25AUHT, 30AUHT, 20AUH, 25AUH, 30AUH 11, 20ALHT, 25ALHT, 30ALFT, 20ALH, 25ALH, 30ALF 11, 20ASB, 25ASB, 30ASB, 20ASB 05, 25ASB 05, 30ASB 05

Window Mount Type

Industrial Type

Product Features

- AC motor /HP with thermo cut-off
- Fan size:(L×W×H): 210×210×92 224×224×194mm
- Duct size mm: 186-250 mm
- Capacities 145 480 m³/h
- IPX4 (outside) rating
- Insulation class E
- Type: high pressure Deluxe series/electric shutter series/cord-operated shutter series
- Able to fix on glass plate of thickness: 3 25mm(15WHCT/20WHCT)
- Material: Plastic/Stainless Steel
- IEC standard compliance, GSO certified, ESMA, KUCAS, SASO, SONCAP
- Models licensed to bear the AMCA certified seal: 15WHCT, 20WHCT, 15WAA, 20WAA, 15WAAMN, 20WAAMN, 15WUD, 20WUD

Product Features

- HP motor with thermal cut-off.
- Fan size (L×W×H)mm: 327×327×171 760×760×320mm
- Capacities: 1150 10920 m³/h
- Static pressure: 47-140 Pa
- Type: shutter/no shutter
- Insulation class: E
- Material: metal (Steel SGCC)
- IEC standard compliance, GSO certified, ESMA, KUCAS, SASO, SONCAP
- Models licensed to bear the AMCA certified seal: 25GSE, 30GSE, 35GSE, 40GSE, 45GSC, 50GSC, 60GSC

PRODUCT OVERVIEW

Ceiling Mount Type

Cabinet Fan

Compact Axial

Mini Sirocco

Product Features

- DC motor & AC motor with thermal cut-off
- Fan size (L×W×H)mm: 170×170×180 376×376×250 mm
- Louver size mm: 240 310 mm
- Duct size mm: 100/150 mm
- Capacities: 80 800 m³/h
- Static pressure: 90 340 Pa
- IPX2
- Insulation class: E
- Material: metal (galvanized steel)/plastic (ABS)
- Auto operation by motion sensor (model: 24JRB)
- AMCA certified
- IEC standard compliance, GSO certified ESMA, KUCAS, SASO, SONCAP

Product Features

- Long life condenser motor with thermal cut-off
- Twin flow fan (Sirocco fan)
- Fan Size(L×W×H)mm: 290×291×184 809×1052×370mm
- Duct Size mm: 100 250mm
- Capacities: 145- 5300 m³/h
- Static pressure: 135 600 Pa.
- IPX2
- Insulation class: E
- Material: galvanized steel enhancing high durability.
- Models licensed to bear the AMCA certified seal: 12NSB, 15NSB, 18NSB, 18NFB, 20NSB, 23NLB, 25NSB, 25NFB

Product Features

- AC motor with thermal cut-off
- Fan size(L×W×H)mm: 280×280×260 554×554×530mm
- Capacities: 550 6522 m³/h
- Static pressure: 115-800 Pa
- Material: Steel/Aluminium
- Ambient temperature range of from -10°C to +40°C
- **I**PX2
- Insulation class: B

Product Features

- AC motor with thermal cut-off
- Fan size (L×W×H)mm: 180×180×120 330×330×250mm
- Duct size mm: 100 200 mm
- Capacities: 144 1590 m³/h
- Static pressure: 70 437 Pa
- Insulation class E
- Material: metal (Steel SGCC)
- Two speed selectable (K16CG1, K17CG1, K19CG1, K21CG1, K16CT1)
- **I**PX2

SOUND

AIR

PRODUCT OVERVIEW

Air Curtain

Water Pump

Product Features

- AC motor with thermal cut-off
- Fan size: (L×W×H): 695×693×220 723×1026×240
- Duct size: 144 194mm
- Capacities: 150 500 m³/h
- Static pressure: 0 100 Pa
- IEC standard compliance & SASO
- **I**PX2

Product Features

- AC motor with thermal cut-off
- Size mm: 900/1200/1500 mm
- Capacities: 920 2450 m³/h
- Material: Steel plate/Steel SGCC/Resin ABS/Glass fiber
- Insulation Class: B/F
- Standard series, Remote control series, Sensor series
- IEC standard compliance, GSO certified, ESMA, KUCAS, SASO, SONCAP

Product Features

- Peripheral/Centrifugal
- Capacity: 5L/Min 154L/min
- Total head: 5m 47.5m
- Stainless Steel Impeller/Brass Impeller
- Material: SUS steel motor shaft
- Output wattage [kW]: 0.37(0.5HP) 1.5(2.0HP)
- Insulation class: F
- IEC standard compliance
- IP54
- Ambient Temperature: -10°C 50°C

GSO - Gulf Standards organization ESMA - Emirati standards Mark ABS - Acrylonitrile butadiene styrene KUCAS: Kuwait Conformity Assurance Scheme SONCAP: Standard Organisation of Nigeria Conformity Assessment Program

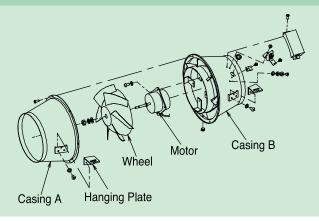
Compact Axial Flow Fan

Lightweight and compact fans designed for commercial ventilation system.

Single Phase

K25DSF2NET K28DSM2NET K35DSM2NET K40DSL2NET K40DSH2NET K45DST2NET

Three Phase K40DTL2BET K40DTH2BET K45DTT2BET K45DTH2BET


Low noise design

The optimal blade design based on the vane theory.

Two speed control

Hi-Lo speed can be selected to meet required specifications.

Construction

Specifications

Easy installation

Installability has been improved using T-shape grooved clamps.

Wide product range

Available for both single and three phase. (10 models)

Main components and materials

Components name	Material	Standard
Cooing A	SPCC.SPHC	JIS G 3141
Casing A	3500,3560	JIS G 3131
	A5052	JIS H 4000
Wheel	PP	JIS K 6921
	SPHC	JIS G 3131
Motor		
Casing B Assy.	SPCC,SPHC	JIS G 3141
Casing D Assy.	31 00,31 110	JIS G 3131
Hanging plate	SPCC	JIS G 3141

_																															
		Rated			Air Vo	olume	Cur	rent	In	out		N	oise Le	vel [dE	3]		Wheel		Duct												
	MODEL No.	Volatage	Number of Poles	Notch	[m	³/h]	[/	4]	[\	V]	Side o	f Body	Inlet	Side	Outle	t Side	Diameter	Weight [kg]	Size												
		[V]	0110103		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz	50Hz	60Hz	50Hz	60Hz	50Hz	60Hz	[cm]	[149]	[mm]												
	K25DSF2NET	000 04014		Hi	600	720	0.19	0.17	34	38	41.0	42.0	51.0	54.0	50.5	53.5	25	4.7	Ø200												
	K29D9F2NET	220-240V	4	Lo	550	650	0.14	0.12	27	29	39.5	41.5	49.0	52.0	48.5	51.5	20	4.7	0200												
	K28DSM2NET	220-240V	4	Hi	1194	1224	0.25	0.28	51	62	44.5	45.5	54.5	55.5	54.0	55.0	28	8.5	Ø250												
SI	K20D3WIZINE I	220-2401	4	Lo	1050	1062	0.24	0.26	55	61	42.0	43.0	52.0	53.0	51.5	52.5	20	0.5	0230												
PHASE	K35DSM2NET	220-240V	4	Hi	2016	2154	0.42	0.57	95	131	45.5	46.5	56.5	57.5	56.0	57.0	35	13.0	Ø300												
	RODDOWZNET	220-2404	-	Lo	1782	1830	0.38	0.50	87	113	43.0	44.0	54.0	55.0	53.5	54.5	00	10.0	2000												
SINGLE	K40DSL2NET	220-240V	4	Hi	3228	3528	0.94	1.3	204	281	56.0	56.5	68.0	68.5	67.5	68.0	40	20,0	Ø350												
Q		220 2 10 1	40V 4	Lo	3084	3186	0.86	1.1	194	245	54.0	54.5	66.0	66.5	65.5	66.0															
	K40DSH2NET	220-240V	4	Hi	3504	4128	1.1	1.8	256	401	55.5	56.5	67.5	68.5	67.0	68.0	40	22,0	Ø350												
				Lo	3444	3822	1.0	1.6	233	348	53.5	54.5	65.5	66.5	65.0	66.0															
	K45DST2NET	220-240V	4	Hi	4968	5940	1.9	2.8	428	643	59.5	61.0	69.5	71.0	69.5	71.0	45	37.0	Ø400												
				Lo	4206	5790	1.7	2.7	398	615	58.0	60.5	68.0	70.5	68.0	70.5															
Ш	K40DTL2BET	380V	380V	380V	380V	380V	380V	380V	380V	380V	380V	380V	380V	380V	4	Hi	3396 3330	3840 3660	0.48 0.42	0.65 0.59	241 237	381 334	56.0	56.0 54.0	68.0	68.0 66.0	67.5	67.5 65.5	40	18.0	Ø350
Ĭ¥				Lo Hi	3426	3912	0.42	0.59	250	372	54.0 56.0	54.0 57.0	66.0 68.0	69.0	65.5 67.5	68.5															
PHASE	K40DTH2BET	380V	4	Lo	3264	3666	0.37	0.58	230	331	55.0	56.0	67.0	68.0	66.5	67.5	40	19.0	Ø350												
				Hi	5004	6000	1.1	1.2	421	638	61.0	63.0	71.0	73.0	71.0	73.0															
THREE	K45DTT2BET	380V	4	Lo	4860	5886	0.93	1,1	397	614	60.5	62.5	70.5	72.5	70,5	72,5	45	36.0	Ø400												
主				Hi	5454	6522	1,2	1.4	511	758	59.0	65.0	68.5	72,5	68,5	72.5															
	K45DTH2BET	380V	4	Lo	5250	5789	1.1	1.3	482	730	58.5	64.5	68.0	72.0	68.0	72.0	45	37.0	Ø400												

Note: In above table, the values are tested 230V for Single-phase Models, and 380V for Three-phase Models.

I. The values of air volume are measured at 0 static pressure (Pa) by the chamber method.

2. The values of Current and Input are in the free load condition.

3. The values of noise level are measured at 0 static pressure (Pa) and at the following positions. (When ducts are connected on both inlet and outlet side.)

Side of fan body : 1.5m apart from the fan body (excluding the noise of outlet side)

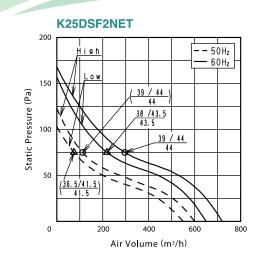
Inlet side : 1.5m apart from the inlet of the fan (excluding the noise of outlet side)

Outlet side : 1.5m angle 45° apart from outlet side (excluding the noise of inlet side)

Add 2dB to the values above for the noise levels apart from 1.0 m.

4. Specifications above indicate the values under the condition of normal temperature (20 degrees Celsius).

Use condition:


- Use in the following conditions
- Handling air and Ambient air : -10 to +40 deg C, relative humidity 85% or less

• Do not use the product in the places such as outdoor (where rain water splashes), where water splashes, steam is always generated, corrosive gas may be generated, or chemicals may be used.

 Do not use the product in the places such as pools or hot springs where the chemicals such as chlorine are used. It has high possibility to cause corrosion in a short term.

Compact Axial Flow Fan

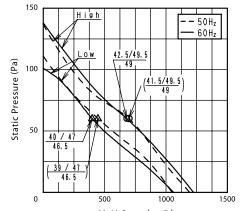
Performance Data

K28DSM2NET

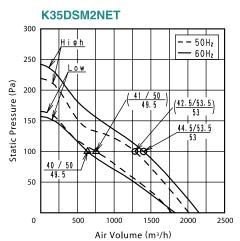
-- 50Hz

 $\left(\frac{50.5/61}{60.5}\right)$

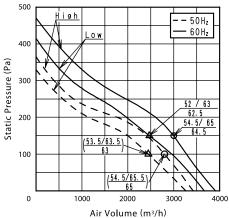
• 60Hz

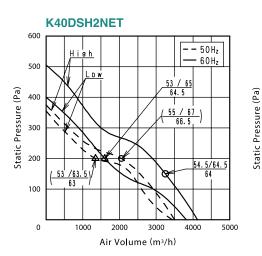

<u>(51/61</u> 60.5

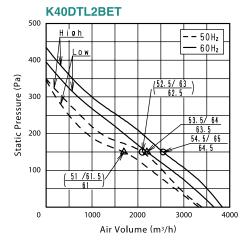
51 / 61

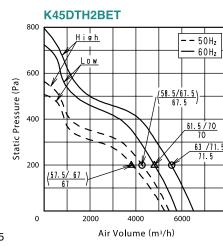

4000

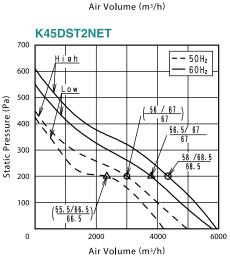
60


3000








K40DTH2BET

2000

K40DSL2NET

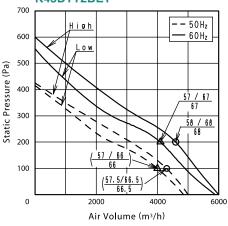
igh

Low

1000

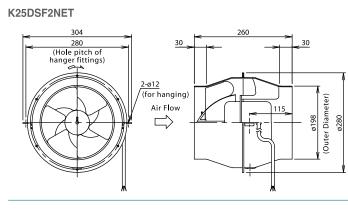
500

400

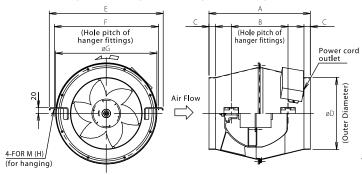

300

200

100

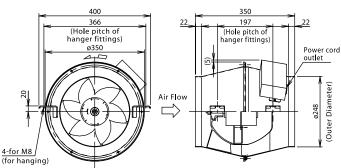

0

49.5

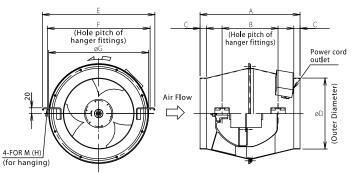


Compact Axial Flow Fan

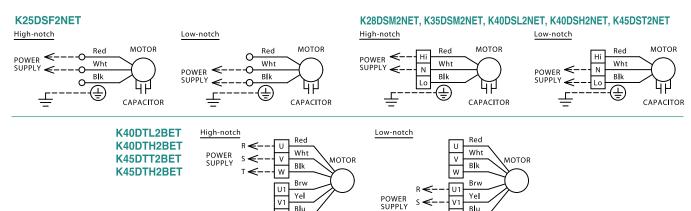
Dimensions



K35DSM2NET, K40DSH2NET, K40DSL2NET, K40DTH2BET, K40DTL2BET



K28DSM2NET



K45DST2NET, K45DTH2BET, K45DTT2BET

MODEL No.	Α	В	С	D	Е	F	G	Н
K35DSM2NET	410	206	21.5	298	460	426	415	8
K40DSH2NET	480	206	26	347	525	491	480	8
K40DSL2NET	480	206	26	347	525	491	480	8
K40DTH2BET	480	206	26	347	525	491	480	8
K40DTL2BET	480	206	26	347	525	491	480	8
K45DST2NET	540	218	25.5	395	588	554	546	10
K45DTH2BET	540	218	25.5	395	588	554	546	10
K45DTT2BET	540	218	25.5	395	588	554	546	10

- V1 <-

⊺<---

W1 Blu

<u>(</u>

V1

Ē

Blu W1

(÷

Mini Sirocco Fan

General purpose fan at a relatively high static pressure and of a large air volume.

K1 K1 K1 K1	gle Phas 0CG 2CG 4CG 6CG 7CG 9CG	1 1 1 1 1		ee Pha 11C													(A) B Trection of ro 120 E	9CG1 · K21		es (for machine in		Power supp (Effective length				
	90G 1CG	-														Detailed drawing Detailed drawing Detailed draw of long holes of long holes										
MODEL	No. A	В	С	D	Е	F	G	н	I	J	ĸ	_ M	N	0	Р	r		12-10	ng holes(f	or machine insta ll at	ion)	(K17CG1) (K19CG1)	(K21CG1) (K21CT1)			
K10C K12C		86	95	24	180	56	82	199				4 10	6 120	98	 Compact design Newly designed casing resulted very compact body. 											
K120		112	119	29	230	76	100	261	148 2	230 1	05 9	8 13 [.]	145	148	-	-			0		ulted v	ery compa	act body.			
	G1 281	125	126	250	160	85	108	279	148 2	237 1	17 1	02 143	3 157	128	148			v noise		-	n a chia	vad mining				
K17C K19C		151	150	300	160	106	130	346	198 3	310 1	65 1	16 18	205	142	198		-	-	rmanc	e sirocco fa	an achie	vea minim	um noise			
K21C	G1 361	166	165	330	200	121	145	378	198 3	360 1	90 1	10 226	6 250	161	198	I	leve									
K21C	T1	100	100	000	200	121	140	0/0	100 0				200	101	100			form o			l alta ala a u		ا معالم الم			
	MODEL								E AC											uction and	dischar	ge port are	Identical			
	K10CG				MG	X100)K, M	CX10	0K, V	GX10	0K, V	CX100	0K			I		mprove								
	K12CG				MG	VIEC		CV15		CV15	OK V	CX150					-			let directi			h o uimo u			
	K1400				WIC	IX I JU	// 、 ///	0/13	UIX, V	UNIS	υπ, ν	0/130	Л					oositio		is adjusta	ible to v	/ertical or	nonzon-			
S	pec	ific	ati	ons	S												tar	5031110								
					INP	ШТ		FANG	PEED			LUME				Noise Lo	evel (dB	1				00071000	DIGGUARGE			
R.	IODEL	No			[W				n-1]		un vc [m [:]		C	asing	, side		on side		ge side	IMPELLER DIAMETER	WEIGHT	SUCTION DUCT SIZE	DISCHARGE DUCT SIZE			
	IUDLL	NO.		50	Hz	- 60H;	z f	50Hz	- 60H;	z 5	0Hz	- 60Hz		Hz	60Hz	50Hz	60Hz	50Hz	60Hz	[cm]	[kg]	[mm]	[mm]			
	K10C	G1			1	13	_	980	970	_	44	143	-	32	32	38	38	38	38	10	3.1	ø100	ø100			
	K12C				21	22	_	760	725	_	258	242		34	32	39	38	39	38	12	3.6	ø150	ø150			
	K14C			3	80	40		930	870) (808	284	3	9	36	44.5	41.5	44.5	41.5	12	3.8	ø150	ø150			
SE	KAOO	~	Hi	4	9	59	1	080	106	0 4	195	470	43	3.5	42.5	50	49	50	49	45	F C	c.4.5.0				
PHASE	K16C	JU1	Lo	4	1	40	8	375	805	5 3	865	335	3	88	36	44.5	42.5	44.5	42.5	15	5.3	ø150	ø150			
	K170	C1	Hi	8	37	95	9	920	850) 7	763	722	4	6	44.5	51	49	51	49	10	0.0	~000	~000			
3LI	K17C	,GI	Lo	7	'4	79	8	815	730) (640	593	42	2.5	40	47	45	47	45	18	8.8	ø200	ø200			
SINGLE	K400		Hi	1	17	143	3 1	110	110	0 9	947	931	50	0.5	50	55.5	55	55.5	55	10	0.1	-000	-000			
S	K19C	GT	Lo	1(09	127	7 1	030	985	5 8	321	791	4	9	48	54	18 9.4 ø200				ø200					
	Ve i e	.	Hi	24	40	340	_	325	143	0 1	420	1540) 5	57	59	61	63	61	63							
	K21C	G1	Lo		20	300	_	230	118	_	260	1230	-	6	54	59.5	58.5	59.5	58.5	20	15	ø200	ø200			
THREE PHASE	K21C	T1	Hi		53	370		355	148		450	1590		7.5	59.5	61.5	63.5	61.5	63.5	20	14.5	ø200	ø200			
IHE			Lo	13	77	228	3 1	070	103	0 1	090	1020	51	1.5	50	55.5	54	55.5	54	5200						

Note:

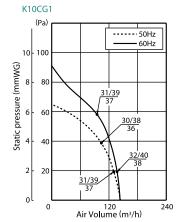
Power consumption is expressed as open value.
 Air volume is measured using the Chamber method (JIS B 8330 or JIS C 9603) at 0Pa static pressure.

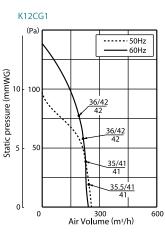
3. Noise : Suction side - Noise at 1.5m at suction side. Casting side - Noise at 1.5m on the side of a machine body. Discharge side - Noise at 1.5m orthogonally at discharge side. Cautions:

• Don't use it for ventilation at a site generating heat, oily smoke, steam and/or moisture. (Environmental condition : -10°C~+40°C, relative humidity below 85%)

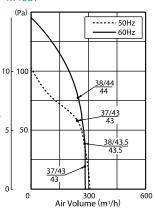
• Install a door 600x600mm or more for maintenance purpose.

• Install a leak breaker or a motor breaker on the source site. A control panel such as a contact switch relay is required for three phase power source.

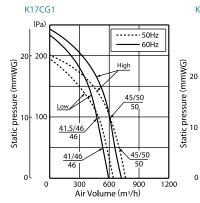

In cold air supply to indoor during winter and at any other occasion susceptible to dew drop, heat insulation is required.
It is recommended to use a commercially available filter at the suction side to avoid dust and/or oil waste attachment on a blade.

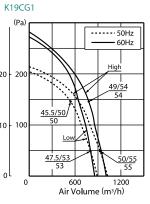

• Install it on a horizontal direction.

• Do not perform parallel operation of more than one unit on a switch, for it may result in motor failure.

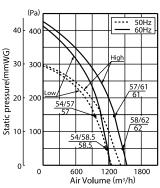

Mini Sirocco Fan

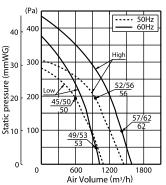
Performance Data



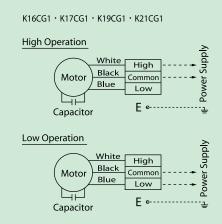


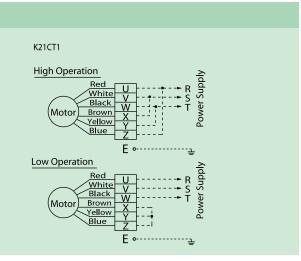
K14CG1


K16CG1 (Pa) ----- 50Hz 60Hz Static pressure (mmWG) 0 21 150 100 43/50.5 50.5 <u>39/45</u> 45 5 50 Low <u>37/43</u> 43 $\frac{43/50}{50}$ ol 300 600 Air Volume (m³/h) 0 900



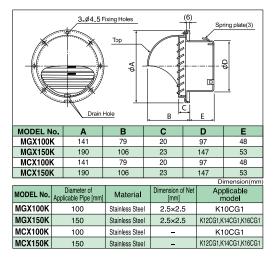
Static pressure (mmWG)



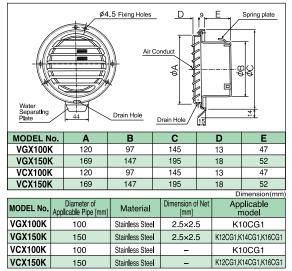

K21CT1

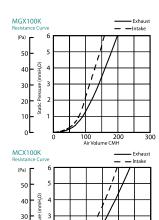
•The figures on the curve indicate noise level (dB). It is calculated as <u>Casing side/Suction side</u>. <u>Discharge side</u>

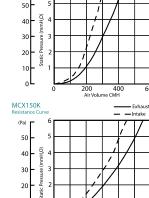
Wiring Diagram



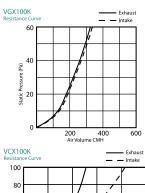
ACCESSORIES Vent Cap & Pipe Hood

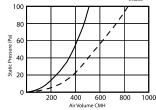

Without Net With Net


MGX100K/MGX150K Pipe Hood With Net **Pipe Hood Without Net** MCX100K/MCX150K

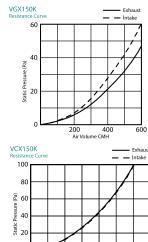

- High strength adopt 0.5mm thickness SUS 304 stainless steel. Excellent anti-rust capability - hood part coated with metallic silver paint prevent oxidation of material.
- Easy installation 3 pcs of spring clip facilitate duct / pipe connection.
- 2.5×2.5mm net keep out ingress of small particles and insects from outside (MGX100K, MGX150K)
- It is recommended to use pipe hood with net at intake terminal while without net at exhaust.

- High strength and excellent anti-rust capability adopt 0.5mm thickness SUS 304 stainless steel.
- Easy installation 3 pcs of spring clip facilitate duct / pipe connection.
- 2.5×2.5mm net keep out ingress of small particles and insects from outside(VGX100K, VGX150K)
- It is recommended to use pipe hood with net at intake terminal while without net at exhaust.




600

VGX100K/VGX150K VCX150K

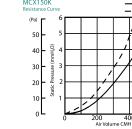


With Net

Without Net

200 400 600 800 1000 1200 1400

0


VCX100K

20

10

00 200 Air Volume CMH

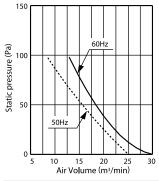
MGX150K

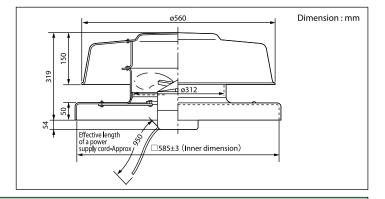
(Pa)

Vent Cap With Net

Vent Cap Without Net

Roof Ventilator

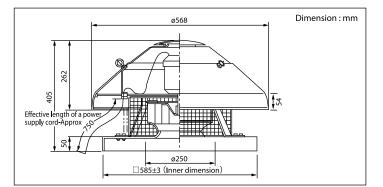

For general ventilation



- Light weight and long durability
- Corrosion-resistant aluminum construction
- Large air volume and low noise level
- Smart design suitable for any building

K30SQK

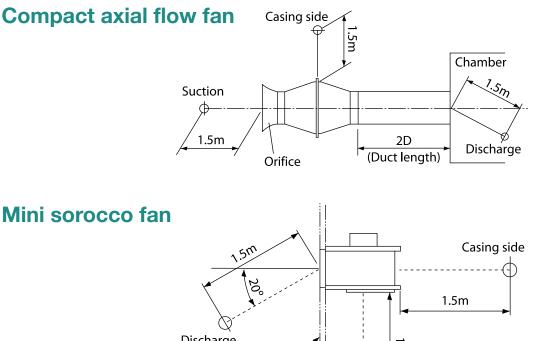
Specifications


			N	lotor specification			Noise	[dB(A)]		Air f	low ra	te at e	ach st	atic pr	essur	e [m³/r	nin]
MODEL No.	Wheel dia	No. of	Rated Volatage	Number of poles	Output	Suctio	n 1.5m	Dischar	ge 1.5m		50	Hz			60	Hz	
	[cm]	Phase	[V]	[P]	[kW]	50Hz	60Hz	50Hz	60Hz	0	50	100	150	0	50	100	150
K30SQK	30	1ø	200-240	4	0.07	54	56	49	52	25	15	9	I	30	18	12	-

For spot ventilation

Air Volume (m³/min)

- Corrosion-resistant aluminum construction
- Turbo fan is used to withstand static pressure
- Sturdy and efficient construction
- Bird screen to prevent birds flying in


Speci	ficatio	ns																			
			Mot			Noise	[dB(A)]			Aiı	r flow	rate	at ea	ch st	atic p	oress	ure [I	m³/m	in]		
MODEL No.	Wheel dia		Rated Volatage	Number of poles	Output	Suction 1.5m Discharge 1				n 50Hz						60Hz					
	[cm]	Phase	[V]	[P]	[kŴ]	50Hz	60Hz	50Hz	60Hz	0	50	100	150	200	250	0	50	100	150	200	250
K25RSF	25	1ø	200-240	4	0.075	58	62	60	64	19	16.5	13	7.5	-	-	21	19	16	13	8	-

General Information

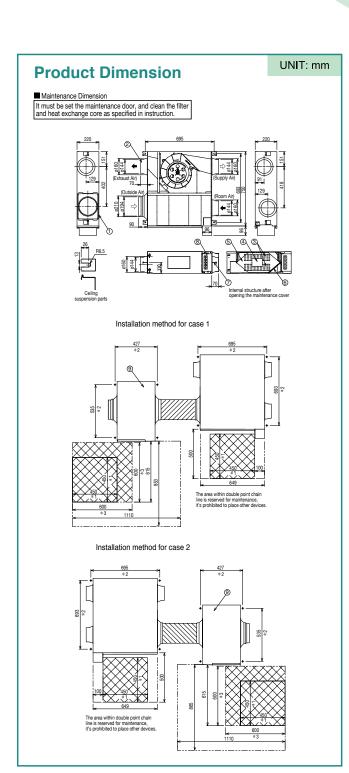
(Compact axial flow fan and mini sirocco fan)

1) Test Standard

- Air volume-static pressure charcteristic is measured according to testing method for fans and blowers (JIS B 8330 or JIS C 9603).
- Noise characteristic is measured according to our internal standard as described below.

Discharge

2) General notes


- 1. Values in the specification table are specified at the static pressure of OPa.
- 2. The values of electric characteristic have an allowance of $\pm 15\%$ for 100W or less and that of $\pm 10\%$ for 100W or more.

۶'n

Suction

- 3. The values of noize characteristic have an allowance of ± 5 dB.
- 4. All fans should be used at the ambient temperature ranging from -10° C to $+40^{\circ}$ C with RH of 85% or less.
- 5. Do not use it for ventilation at a site generating heat, oily smoke, steam and /or moisture.
- 6. Install a leak breaker or a motor breaker on the power source site. A control panel such as a contact switch relay is required for three phase power source.
- 7. In cold air supply to indoor during winter and at any other occasion susceptible to dew drop, heat insulation is required.
- 8. It is recommended to use a commercially available filter at the suction side to avoid dust and/or oil waste attachment on a blade.
- 9. Install it on a horizontal direction. Do not install it upside down or vertically. (for compact axial flow fan)
- 10. Do not perform parallel operation of more than one unit on a switch, for it may result in motor failure.
- 11. Make sure that capacity and specifications of change-over switch can meet the electric characteristic of fans when Hi/Lo speed control switch is used.
- 2.11

Standard Series

E25DZUA

- · Counter-flow heat-exchange element adopted for compact size
- · All maintenance can be performed through a single inspection hole
- · Equipped with Extra-High setting
- · Bypass ventilation available for speedy exhaust
- · Interlock with air conditioning available

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the industrial series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on the tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Rating Program.

No.	Part name	Qty	Material
1	Frame	1	Galvanized Steel Sheet
2	Adapter	4	ABS
3	Impeller	2	PP
4	Fan Motor	1	/
5	Heat Exchange Core	1	Special Paper and Resin
6	Indoor Filter	1	/
7	Ceiling Suspension	4	Galvanized Steel Sheet
8	Switch Box	1	Galvanized Steel Sheet
9	Filter Box Unit	-	/

Spec	Specification															
Madal Na	CFM AT Static Pressure (ps-inches of H ₂ O)									Watts*	Watts**					
Model No.	Voltage	Frequency	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	1.75	For AMCA	For IEC
E25DZUA	220V	60Hz	CFM (OA-SA)	183	172	168	155	143	131	108	77	14	-	-	197	171
E23DZUA	2200	UUHZ	CFM (RA-EA)	130	118	115.5	104	91	77	44	0	-	-	-	187	171

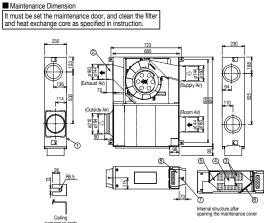
Performance certified is for installation type D-Ducted inlet, Ducted outlet. Speed (RPM) shown is nominal. Performance is based on actual speed of test. Performance ratings do not include the effects of appurtenances (accessories). Air performance ratings for gross supply airflow are from port 2. Air performance ratings for gross exhaust airflow are to port 3.

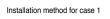
*The Watts ratings is only for AMCA test method and it is at the static pressure of 0 inch of H2O. ** The Watts rating is only for IEX test method and AMCA Certified Rating Seal does not apply to IEC test method watts.

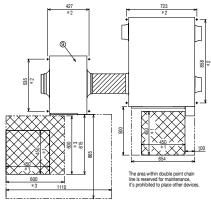
Standard Series

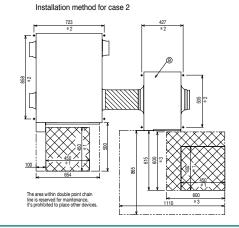
E35DZUA

- Counter-flow heat-exchange element adopted for compact size
- All maintenance can be performed through a single inspection hole
- Equipped with Extra-High setting
- · Bypass ventilation available for speedy exhaust
- · Interlock with air conditioning available




KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the industrial series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on the tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Rating Program.


No.	Part name	Qty	Material
1	Frame	1	Galvanized Steel Sheet
2	Adapter	4	ABS
3	Impeller	2	PP
4	Fan Motor	1	/
5	Heat Exchange Core	1	Special Paper and Resin
6	Indoor Filter	1	/
7	Ceiling Suspension	4	Galvanized Steel Sheet
8	Switch Box	1	Galvanized Steel Sheet
9	Filter Box Unit	-	/


Product Dimension

UNIT: mm



Spec	Specification															
Madal Na	Vallana	F				CFM AT	Static Pr	essure (p	s-inches	of H ₂ O)					Watts*	Watts**
Model No.	Voltage	Frequency	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	1.75	For AMCA	For IEC
E35DZUA	220V	60Hz	CFM (OA-SA)	258	250	247	237	225	211	174	144	118	69	-	348	310
ESSUZUA	2200	0082	CFM (RA-EA)	192	183	180	169	157	144	116	84	49	0	-	342	310

Performance certified is for installation type D-Ducted inlet, Ducted outlet. Speed (RPM) shown is nominal. Performance is based on actual speed of test.

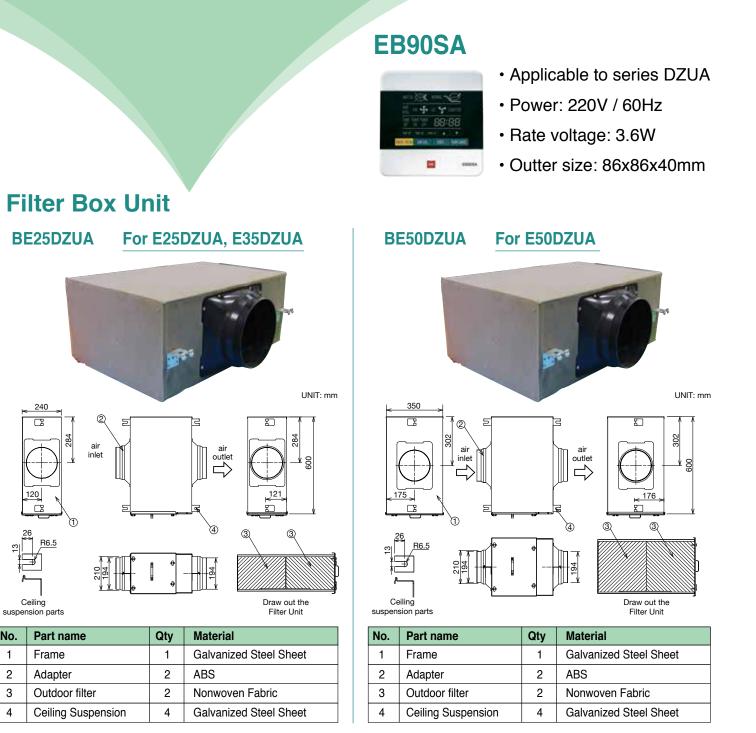
*The Watts ratings is only for AMCA test method and it is at the static pressure of 0 inch of H2O.** The Watts rating is only for IEX test method and AMCA Certified Rating Seal does not apply to IEC test method watts.

Standard Series

E50DZUA

- · Counter-flow heat-exchange element adopted for compact size
- · All maintenance can be performed through a single inspection hole
- · Equipped with Extra-High setting
- · Bypass ventilation available for speedy exhaust
- · Interlock with air conditioning available

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the industrial series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on the tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Rating Program.


No.	Part name	Qty	Material
1	Frame	1	Galvanized Steel Sheet
2	Adapter	4	ABS
3	Impeller	2	PP
4	Fan Motor	1	1
5	Heat Exchange Core	2	Special Paper and Resin
6	Indoor Filter	1	/
7	Ceiling Suspension	4	Galvanized Steel Sheet
8	Switch Box	1	Galvanized Steel Sheet
9	Filter Box Unit	-	/

Spec	Specification															
Model No.	Voltage	Frequency		CFM AT Static Pressure (ps-inches of H ₂ O) V									Watts*	Watts**		
Model No.	vonage	Frequency	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	1.75	For AMCA	For IEC
	E50DZUA 220V 60Hz	col.1=	CFM (OA-SA)	339	330	326	314	303	290	261	230	188	134	80	470	406
ESODZOA		00H2	CFM (RA-EA)	253	241	238	224	207	190	154	117	82	41	-	443	406

Performance certified is for installation type D-Ducted inlet, Ducted outlet. Speed (RPM) shown is nominal. Performance is based on actual speed of test. Performance ratings do not include the effects of appurtenances (accessories). Air performance ratings for gross supply airflow are from port 2. Air performance ratings for gross exhaust airflow are to port 3.

*The Watts ratings is only for AMCA test method and it is at the static pressure of 0 inch of H2O. ** The Watts rating is only for IEX test method and AMCA Certified Rating Seal does not apply to IEC test method watts.

Accessory & Filter Box

Replacement Filter

Product name	Filter Model	Filter(s) Included	Applicable Model	Service life of the filter	Remarks
Replacement filter	FP25DZUA	2	BE25DZUA	2-4 months	
for Filter Box Unit	FP50DZUA	2	BE50DZUA	2 4 monting	
	FB25DZUA	1	E25DZUA		Clean monthly
Replacement filter for ERV	FB35DZUA	1	E35DZUA	6 months	
	FB50DZUA	1	E50DZUA		

• The service life of the filters varys with service environment, and the filters should be replaced with the new one.

• The air volume and filter efficiency will drop to different levels because of different service environments and service time. If the whole area indicated by the arrow turns black, please replace the filter.

No.

1

2

3

4

Product Specification

Model No.	Veltere	Freewoney	CFM AT Static Pressure (ps-inches of H ₂ O)												Watts*	Watts**
woder no.	Voltage	Frequency	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	1.75	For AMCA	For IEC
E25DZUA	220V	60Hz	CFM (OA-SA)	183	172	168	155	143	131	108	77	14	-	-	197	171
E25DZUA	2200	00112	CFM (RA-EA)	130	118	115.5	104	91	77	44	0	-	-	-	187	171
E35DZUA	220V	60Hz	CFM (OA-SA)	258	250	247	237	225	211	174	144	118	69	-	348	310
ESSDZUA	2200	00112	CFM (RA-EA)	192	183	180	169	157	144	116	84	49	0	-	342	310
E50DZUA	220V	60Hz	CFM (OA-SA)	339	330	326	314	303	290	261	230	188	134	80	470	406
ESUDZUA	2200	00112	CFM (RA-EA)	253	241	238	224	207	190	154	117	82	41	-	443	406

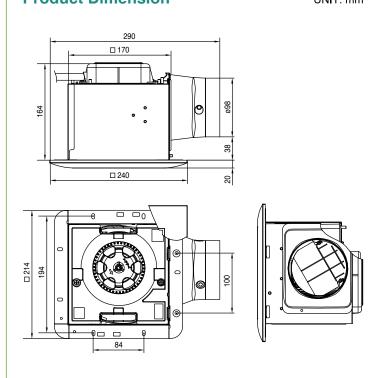
Preformance certified is for installation type D: Duct inlet, Duct outlet. Performance is based on actual speed of test. * The Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H2O. ** The Watts rating is only for IEC test method and AMCA Certified Rating Seal does not apply to IEC test method watts

The walls falling is only for	IEC lest method and Alvic	A Certilleu hatiliy Seal	utes not apply to ind test	memou wans.

	Size (mm)	650 x 750 x 220	680 x 920 x 230	680 x 1090 x 240
	Weight	30	39	45
Main Body	OA Side Duct Diameter		ø200	
	Duct Diameter RA/SA/EA	Ø1	50	ø200

l	Jp-Side Down Installation					
Filter Box	Duct Diameter	ø200				
	Size (mm)	ø200 600 x 385 x 240 600 x 385 x 350				

Super Quiet Series


17CUG/

17CUGA

Product Dimension

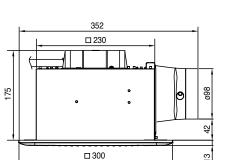
UNIT: mm

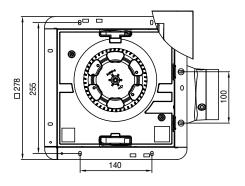
- Super low noise design
- · Long life ball bearing motor
- Taper blade sirocco fan
- Resonance-Noise-Absorption Structure
- Reverse flow prevention shutter
- Pre-installed power cord

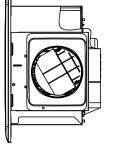
KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the Super Quiet Series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Spec	Specification													
Medel	Valtara	Freeword	CFN	H2 O)	DDM									
Model	Voltage	Frequency	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.625	RPM	Watts*	Watts**	
	220V	60Hz	CFM	41	28	25					810	11	10	
17CUG/	2201	00112	Sones	0.3	0.5	0.6					010			
17CUGA	2401/	50U-7	CFM	50	43	40					780	10	10.5	
	2400	40V 50Hz -	Sones	0.3	0.4	0.6					/ 80	12	10.5	

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels.


* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.
** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.


Super Quiet Series



24CUG/24CDG/ 24CHG

Product Dimension

UNIT: mm

- Super low noise design
- Long life ball bearing motor
- Taper blade sirocco fan
- Resonance-Noise-Absorption Structure
- Reverse flow prevention shutter
- Pre-installed power cord

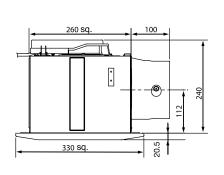
KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the Super Quiet Series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

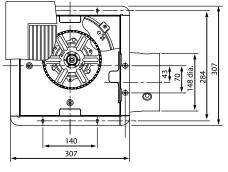
Specification

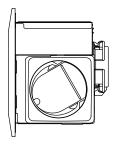
Madal	Maltana	Froquency	CFN	// SON	E AT SI		ressure	(ps-inc	hes of	H2 O)	DDM	Watte*	Watts**
Model	Voltage	Frequency	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.625	RPM	Watts*	Watts**
	220V	60Hz	CFM	83	73	68	44				610	16	15.5
24CUG	220 V	00112	Sones	0.5	0.6	0.6	1.4				010	10	15.5
24000	240V	50Hz	CFM	88	77	75	51				680	15.1	14
	240 V	30HZ	Sones	0.7	0.8	0.9	1.6				000	15.1	14
	220V	60Hz	CFM	101	90	88	64				750	18.2	16.5
24CDG	2200	00112	Sones	0.7	0.8	0.9	1.5				750	10.2	10.5
24000	240V	50Hz	CFM	105	91	86	64				780	18.6	175
	240 V	SULIZ	Sones	0.8	0.9	1.0	1.7				/ 60	10.0	17.5
	220V	60Hz	CFM	109	99	96	75	47			860	23.6	22
24CHG	2200	UUHZ	Sones	1.0	1.2	1.2	1.5	2.4			000	23.0	22
240110	2401/	/ <u>FOUR</u>	CFM	116	100	94	72	33			890	23.5	22
	240V 50Hz	Sones	1.2	1.3	1.4	1.6	.6 2.1				23.5	22	

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.
** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

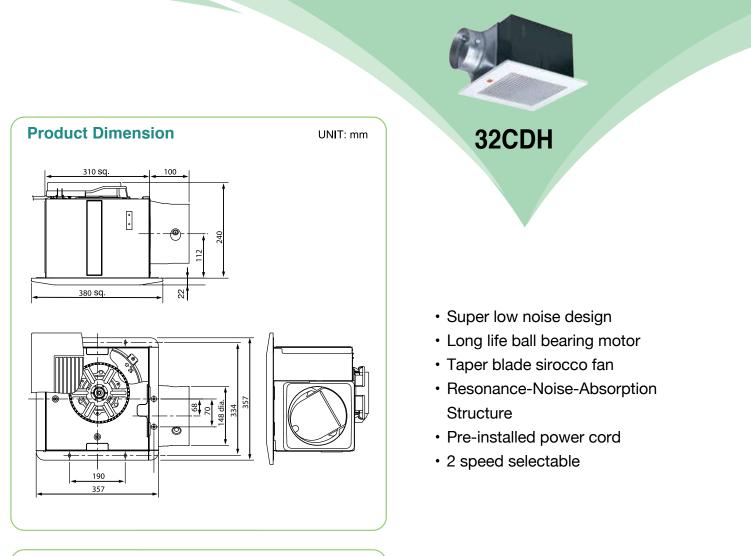

Super Quiet Series


27CHH


Product Dimension

UNIT: mm

- Super low noise design
- · Long life ball bearing motor
- Taper blade sirocco fan
- Resonance-Noise-Absorption Structure
- · Pre-installed power cord
- · 2 speed selectable



KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the Super Quiet Series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specification														
Model	Voltage	Frequency	Speed	CFM / SONE AT STATIC Pressure (ps-inches of H ₂ O)										
				inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.625	RPM	Watts*	Watts**
27CHH	220V	60Hz	Hi	CFM	182	162	158	118	78	37		570	33	33
				Sones	1.1	1.2	1.3	1.7	2.2	2.5				
	240V	50Hz	Hi	CFM	198	179	172	126	78	18		609	37	34
				Sones	1.4	1.5	1.6	1.8	2.3	2.5				

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. * the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Super Quiet Series

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the Super Quiet Series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specification CFM / SONE AT STATIC Pressure (ps-inches of H₂O) Model Voltage Frequency Speed **RPM** Watts* Watts** inches of H₂O 0.1 0.125 0.25 0.375 0.5 0.625 0 CFM 226 202 196 163 127 91 53 220V 60Hz 580 48 Hi Sones 1.2 1.3 1.4 1.7 2.2 2.7 3.3 32CDH CFM 257 236 230 192 147 99 53 240V 50Hz Hi 675 56 Sones 1.6 1.7 1.8 1.9 2.5 3.0 3.6

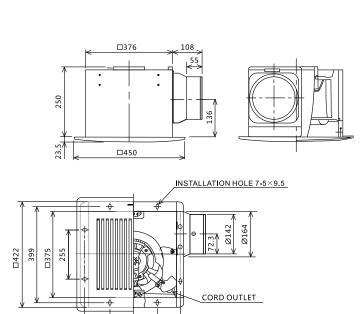
Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

48

50

Standard Series



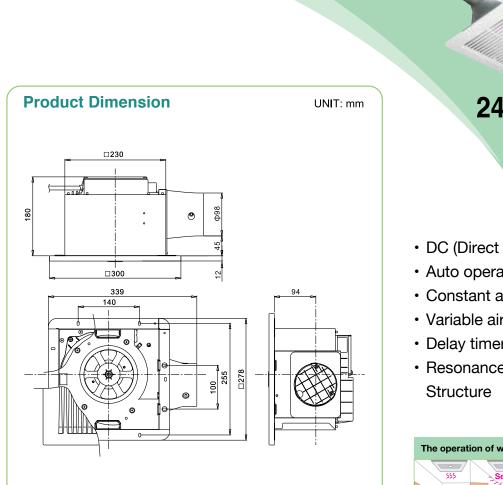
38CDG/ 38CDG 05

Product Dimension

UNIT: mm

- · High-Low speed selectable
- · Condenser motor with thermal cut-off
- Well lubricated bearing for long life operation
- · High performance sirocco fan

255 399

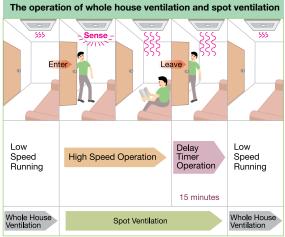

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the Standard models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specification																
Model	Voltage	Frequency	Speed	CFM / SONE AT STATIC Pressure (ps-inches of H ₂ O)												
				inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.625	0.75	0.875	RPM	Watts*	Watts**
38CDG	220V	60Hz	Hi	CFM	344	323	317	290	261	230	197	163	126	626	98	98
				Sones	3.1	3.2	3.2	3.3	3.6	4.1	4.5	5.7	5.7			
38CDG 05 38CDG	240V	50Hz	Hi	CFM	387	367	362	336	305	259	212	165	108	- 737	118	104
				Sones	4.0	4.1	4.2	4.3	4.4	4.7	5.3	5.7	6.2			

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

DC Motor Series



KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the DC Motor models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

24JRB

- DC (Direct Current) motor
- Auto operation by motion sensor
- Constant airflow
- Variable air volume
- Delay timer (15 minutes)
- Resonance-Noise-Absorption

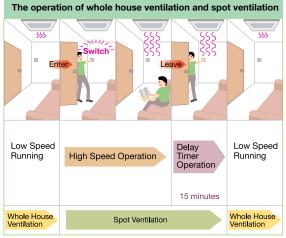
The operation is activated by motion sensor.

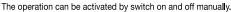
Spec	ificati	ion														
Medel	Vellege	F	Croad	CFM/SO		T STA	TIC Pr	essur	e (ps-i	nches	of H ₂	C)				
Model	voltage	Frequency	Speed	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.625	0.75	0.875	RPM	Watts*	Watts**
	220V	60Hz	Hi	CFM	88	88	88	88	63	34	5					
24JRB	2200	00112	111	Sones	0.7	1.0	1.0	1.3	1.7	1.8	3.1			853	10	8
240110	240V	50Hz	Hi	CFM	88	88	88	88	63	34	5			000		0
	2400			Sones	0.7	1.0	1.0	1.3	1.7	1.8	3.1					

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

DC Motor Series


24JAB

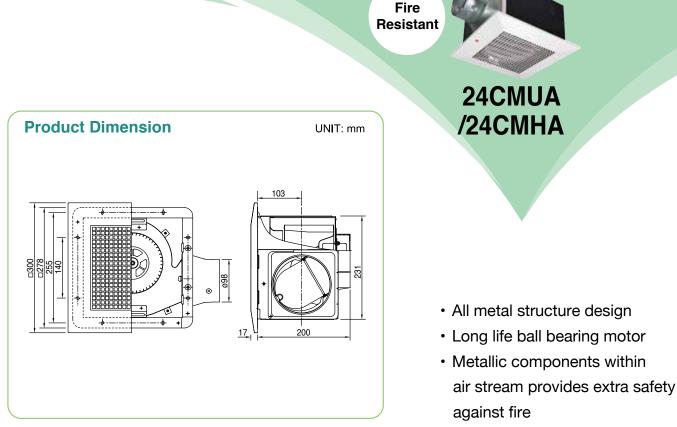

Product Dimension

UNIT: mm

- DC (Direct Current) motor
- Constant airflow
- Variable air volume
- Delay timer (15 minutes)
- Resonance-noise-Absorption Structure

Spacification

SOUND AIR


KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the DC Motor models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Spec	mcau	on														
Madal	Vellere	Freedoment	Cread	CFM/SO		T STA	TIC Pr	essur	e (ps-i	nches	of H ₂	C)				
Model	voltage	Frequency	Speed	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.625	0.75	0.875	RPM	Watts*	Watts**
	220V	60Hz	Hi	CFM	88	88	88	88	63	34	5					
24JAB	2200	00112	111	Sones	0.6	0.9	1.0	1.4	1.6	1.9	3.2			839	10	8
24070	240V	50Hz	Hi	CFM	88	88	88	88	63	34	5			039		0
	2400	JUHZ		Sones	0.6	0.9	1.0	1.4	1.6	1.9	3.2					

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.
** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Metal Series

Reverse flow prevention shutter

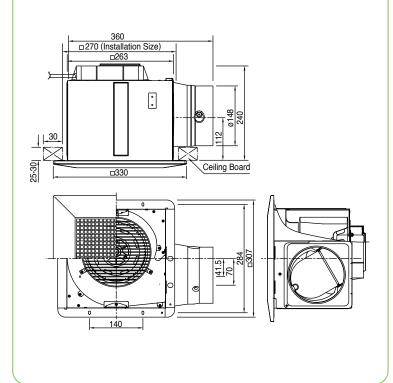
KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the Metal Series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specification CFM / SONE AT STATIC Pressure (ps-inches of H₂O) Model Voltage Frequency **RPM** Watts* Watts** inches of H₂O 0 0.1 0.125 0.25 0.375 0.5 0.625 CFM 55 40 37 20 220V 60Hz 495 13 12 Sones 0.3 0.7 0.8 1.6 24CMUA CFM 55 41 44 24 240V 50Hz ---____ ____ 562 14 13 Sones 0.3 0.8 1.0 1.4 CFM 94 85 83 72 54 220V 60Hz 25 23 681 Sones 1.0 1.4 1.5 1.9 2.3 24CMHA CFM 108 98 95 77 44 240V 50Hz 753 27 25 Sones 1.4 1.8 1.9 2.1 2.2

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H2O.

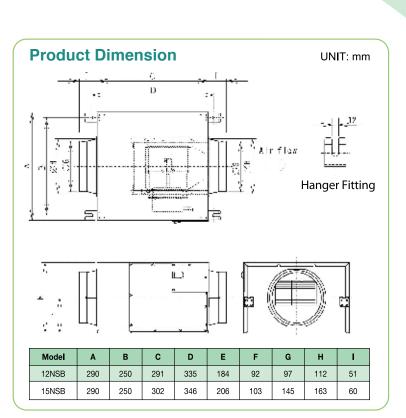
** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.


Metal Series

Product Dimension

UNIT: mm

- All metal structure design
- Long life ball bearing motor
- · Metallic components within air stream provides extra safety against fire
- Reverse flow prevention shutter


KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the Metal Series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Spec	ificatio	n											
Medel	Valtaria	F	CFN	/I / SON	E AT SI		ressure	e (ps-inc	hes of I	H2 O)			386 11 44
Model	Voltage	Frequency	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.625	RPM	Watts*	Watts**
	220V	60Hz	CFM	208	184	178	144	108	79		615	46	43
27CMHA	2200	00112	Sones	1.6	1.7	1.7	2.3	3.2	3.5		015	40	40
	240V	50Hz	CFM	219	194	188	150	110	70		669	46	43
	240V	50HZ	Sones	1.9	1.9	2.0	2.4	3.4	3.1		009	40	40

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.
** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Low Noise Type - Single Phase Series

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the low noise series cabinet fan models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

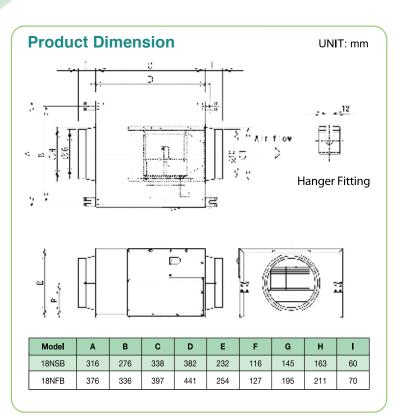
Specification

-																	
Madal	Vellere			C	CFM/S	SONE /	AT STA	TIC Pr	essure	(ps-in	ches o	f H₂O)					
Model	voitage	Frequency	Speed	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	RPM	Watts*	Watts
	0001/	COL 1-	1.15	CFM	114	105	102	87	65			-			1 400	06	23
	220V	60Hz	Hi	Sones	1.5	1.4	1.4	1.3	1.4			-			1,460	26	23
12NSB	0.401/			CFM	102	90	86	67	39			-			1,342	27	22
	240V	50Hz	Hi	Sones	2.0	1.7	1.6	1.4	1.5			-			1,342	21	22
	0001/	0011-		CFM	200	183	177	149	118	83			_		1,520	45	42
	220V	60Hz	Hi	Sones	2.7	2.5	2.4	2.3	2.2	2.0		-	-		1,520	40	42
15NSB	0.401/			CFM	193	177	172	139	94	20		-			1 070	47	07
	240V	50Hz	Hi	Sones	3.7	3.4	3.2	2.6	2.5	2.8		-	_		1,373	47	37

Performance certified is for installation type D: Ducted inlet, Ducted outlet.

Performance ratings do not include the effects of appurtenances (accessories). Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation Type D: ducted inlet hemispherical sone levels. Ratings do not include the effect of duct end correction * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.


12NSB/ 15NSB

- Long life condenser motor with thermal cut-off
- Twin flow fan (sirocco fan)
- · Fan casing with tapered scroll
- Embedded terminal box
- Noise absorption material adopted
- Compact size

Low Noise Type - Single Phase Series

- · Long life condenser motor with thermal cut-off
- Twin flow fan (sirocco fan)
- · Fan casing with tapered scroll
- Embedded terminal box
- Noise absorption material adopted
- Compact size

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the low noise series cabinet fan models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.


Spe	cifica	tion															
Madal	Veltere	_		C	CFM/S	SONE /	AT STA	TIC Pr	essure	(ps-in	ches o	f H2O)					
Model	voltage	Frequency	Speed	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	RPM	Watts	Watts**
	220V	60Hz	Hi	CFM	274	261	258	241	222	196	137		-		1,470	80	73
18NSB	2200	0002		Sones	3.3	3.1	3.0	2.9	2.7	2.6	2.7		-		1,470	00	/3
TONOD	240V	5011-	Hi	CFM	281	263	259	232	200	163	34		-		1,342	84	68
	240V	50Hz		Sones	4.8	4.4	4.4	3.8	3.4	3.0	2.9		-		1,042	04	00
	220V	60Hz	Hi	CFM	417	399	395	373	347	318	237		-		1,420	128	119
18NFB	2200	0002		Sones	4.0	3.9	3.9	3.9	3.6	3.5	3.4		-		1,420	120	113
TONER	240V	50Hz	Hi	CFM	429	406	400	381	344	290	78		_		1,327	135	104
	2400			Sones	5.6	5.4	5.4	5.1	4.6	4.3	4.2		-		1,327	135	104

Performance certified is for installation type D: Ducted inlet, Ducted outlet.

Performance ratings do not include the effects of appurtenances (accessories). Speed (RPM) shown is nominal.

Performance ratings to not include the effects of apputchances (accessories), opeed (in h) shown is nothinal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation Type D: ducted inlet hemispherical sone levels. Ratings do not include the effect of duct end correction. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Low Noise Type - Single Phase Series

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the low noise series cabinet fan models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

20NSB/ **23NLB**

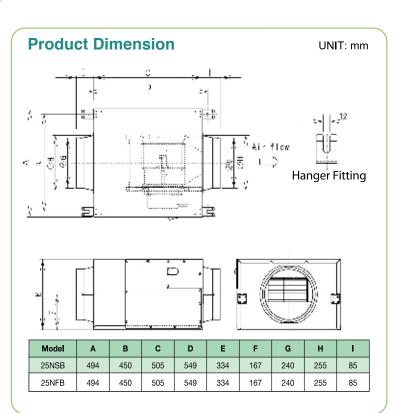
- Long life condenser motor with thermal cut-off
- Twin flow fan (sirocco fan)
- · Fan casing with tapered scroll
- Embedded terminal box
- Noise absorption material adopted
- Compact size

Sp	ecifi	cation
		U ddi U

Medel	Valtaria			C	CFM/S	SONE /	AT STA	TIC Pr	essure	(ps-in	ches o	f H₂O)					
Model	vonage	Frequency	Speed	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	RPM	Watts	Watts**
	220V	6011-		CFM	469	459	456	444	433	413	354	275	-	-	1 000	170	150
20NSB	2200	60Hz	Hi	Sones	4.0	4.0	3.9	3.8	3.9	4.0	4.1	4.2	-	-	1,380	170	159
201030	240V	5011-	Hi	CFM	517	500	495	464	424	382	265	110	-	-	1,328	175	135
	240V	50Hz		Sones	6.0	5.8	5.8	5.4	5.1	4.8	4.5	4.5	-	-	1,320	175	135
	220V	60Hz	Hi	CFM	655	642	640	625	611	597	555	505	440	-	1,400	350	310
23NLB	2200	00112		Sones	6.0	6.0	5.9	5.9	5.7	5.7	5.8	5.8	5.8	-	1,400	330	310
	240V	50Hz	Hi	CFM	688	670	664	642	614	579	493	388	199	-	1 0 4 0	047	000
	2701	50112		Sones	8.8	8.6	8.4	8.1	8.0	7.6	7.2	6.7	6.6	-	1,342	347	260

Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation Type D: ducted inlet hemispherical sone levels. Ratings do not include the effect of duct end correction.

* the Watts rating is only for AMCA test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

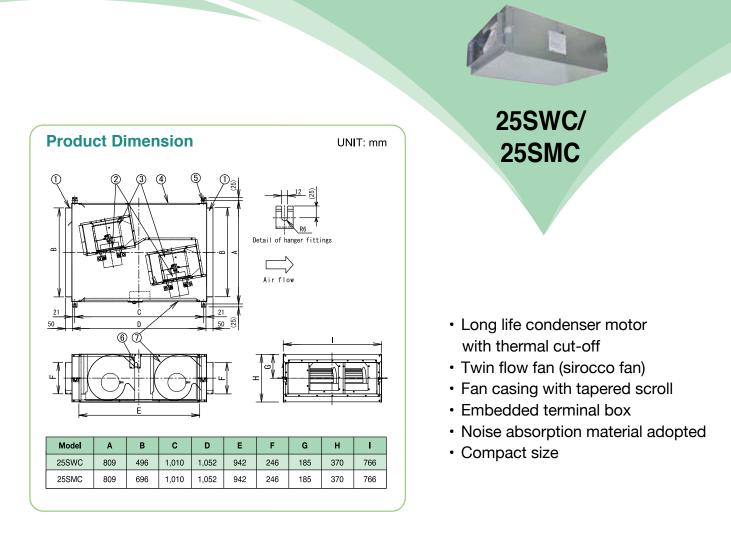

Performance certified is for installation type D: Ducted inlet, Ducted outlet. Performance ratings do not include the effects of appurtenances (accessories). Speed (RPM) shown is nominal.

Low Noise Type - Single Phase Series

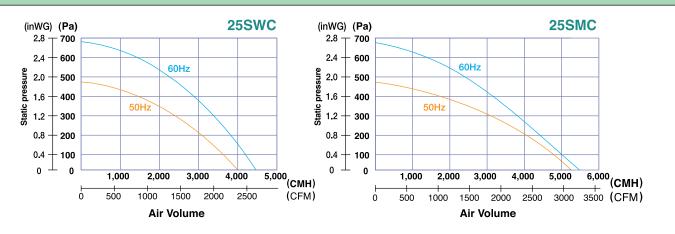
Long life condenser motor with thermal cut-off

- Twin flow fan (sirocco fan)
- · Fan casing with tapered scroll
- Embedded terminal box
- Noise absorption material adopted
- Compact size

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the low noise series cabinet fan models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.


Spe	cifica	tion															
Medel	Veltere	_		(CFM/S	SONE /	AT STA	TIC Pr	essure	e (ps-in	ches o	f H₂O)					
Model	voltage	Frequency	Speed	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	RPM	Watts	Watts**
	220V	60Hz	Hi	CFM	940	924	919	899	877	857	790	710	610	502	1,380	460	425
25NSB	2200	00112		Sones	7.1	7.1	7.1	7.0	6.8	6.8	6.7	6.7	6.7	6.9	1,000	400	423
201000	240V	50Hz	Hi	CFM	963	938	935	906	868	822	719	567	395		1,305	481	370
	240 V	JUHZ		Sones	10.1	9.8	9.7	9.3	9.2	8.8	8.0	7.5	8.2		1,303	401	370
	220V	60Hz	Hi	CFM	1,016	1,000	995	975	954	933	875	803	710	590	1,420	680	520
25NFB	2200	0002		Sones	8.2	8.2	8.2	8.2	7.9	7.9	7.8	7.6	7.5	7.5	1,420	000	520
ZONFB	240V	50Hz	Hi	CFM	1,057	1,048	1,040	1,010	972	922	811	660	473		1,330	537	400
	240 V	50HZ	п	Sones	12.1	11.9	11.5	11.1	10.6	9.8	8.7	8.7	10.3		1,330	537	430

Performance certified is for installation type D: Ducted inlet, Ducted outlet.

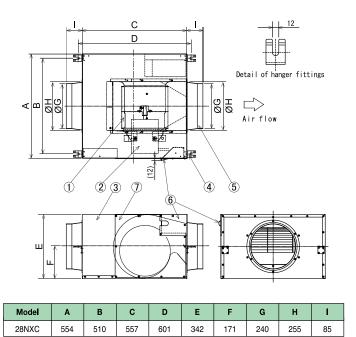

Performance ratings do not include the effects of appurtenances (accessories). Speed (RPM) shown is nominal.

Performance ratings to not include the effects of apputchances (accessories), opeed (rh shown is nothinal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation Type D: ducted inlet hemispherical sone levels. Ratings do not include the effect of duct end correction. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

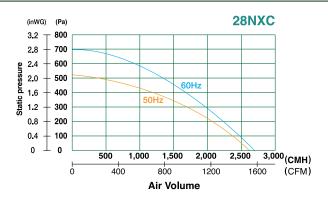
Low Noise Type - Three Phase Series

Performance Data [380V 50/60Hz]

Specific	cation										
Model No.	Phase	Voltage [V]	Frequency [Hz]	Consumption [W]	RPM [min ⁻¹]	Air V [CMH]	olume [CFM]	Noise [dB(A)]	Weight [kg]	Duct Size [mm]	Impeller Diameter [mm]
050000	0	000	50	940	1,375	4,000	2,354	43	<u> </u>	050 500	050
25SWC	3	380	60	1,450	1,530	4,500	2,648	45	60	250 x 500	250
25SMC	3	380	50	1,180	1,345	5,200	3,060	45	60	250 x 700	250
20010	5	300	60	1,750	1,470	5,500	3,237	46	00	250 x 700	250

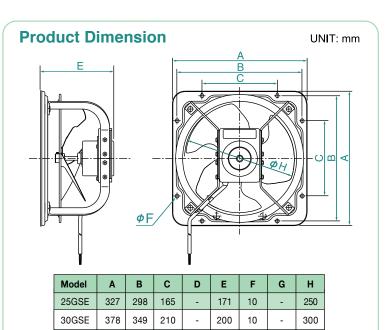

Low Noise Type - Three Phase Series

28NXC


Product Dimension

UNIT: mm

- Long life condenser motor with thermal cut-off
- Twin flow fan (sirocco fan)
- Fan casing with tapered scroll
- Embedded terminal box
- Noise absorption material adopted
- Compact size


Performance Data [380V 50/60Hz]

Specifi	cation										
Model No.	Phase	Voltage [V]	Frequency [Hz]	Consumption [W]	RPM [min ⁻¹]	Air Vo [CMH]	olume [CFM]	Noise [dB(A)]	Weight [kg]	Duct Size [mm]	Impeller Diameter [mm]
OONIVO	0	200	50	600	1,295	2,600	1,530	44	00	~050	000
28NXC	3	380	60	840	1,380	2,650	1,560	45	28	ø250	280

High Pressure Series

35GSE

467

434

250

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the industrial series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

236

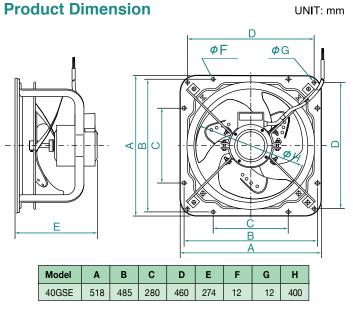
12

350

25GSE/30GSE/ 35GSE

- Single phase
- · Reversible by adjusting wiring and blade
- · Bell mouth construction with distinctive wave-shaped blade
- Durable powder coating
- High performance motor with thermal cutoff
- Ambient temperature range from -10°C to +50°C
- · Possible to install horizontally or vertically
- Optional Shutter available

Speci	ficati	on											
		_		CFM/	SONE AT	STATIC Pr	essure (ps	-inches of	H ₂ O)				
Model	Voltage	Frequency	inches of H ₂ O	0	0.05	0.075	0.1	0.125	0.25	0.375	RPM	Watts*	Watts**
	220V	60Hz	CFM	788	742	715	686	647	-	-	1570	61	57
25GSE	2200	00112	Sones	4.9	4.7	4.5	4.5	4.6	-	-	1570	01	57
20001	240V	50Hz	CFM	701	657	633	600	565	187	-	1400	48	44
	2400	50112	Sones	3.8	3.6	3.6	3.5	3.6	8.6	-	1400	40	44
	220V	60Hz	CFM	1308	1247	1217	1184	1153	772	-	1460	129	119
30GSE	2200	00HZ	Sones	9.0	9.0	9.1	9.0	9.1	9.4	-	1400	129	119
3003E	240V	50Hz	CFM	1177	1119	1090	1058	1026	561	243	1315	106	98
	2400	50112	Sones	5.5	5.5	5.6	5.6	5.8	11.1	12.0	1315	106	90
	0001/		CFM	1850	1788	1752	1712	1669	1456	600	1640	178	161
35GSE	220V	60Hz	Sones	11.9	11.6	12.0	12.4	13.6	14.6	13.4	1040	170	101
3303E	240V	50Hz	CFM	1615	1548	1506	1458	1411	1147	390	1435	130	122
	2400	30112	Sones	8.6	8.2	8.2	8.0	8.0	12.6	13.4	1435	130	122

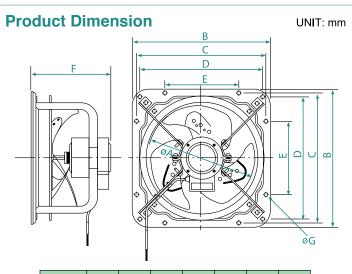

Performance certified is for installation type A: Free Inlet, Free Outlet. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free Inlet hemispherical sone levels.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H2O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

High Pressure Series

- Single phase
- Reversible by adjusting wiring and blade
- Bell mouth construction with distinctive wave-shaped blade
- Durable powder coating
- High performance motor with thermal cutoff
- Ambient temperature range from -10°C to +50°C
- · Possible to install horizontally or vertically
- Optional Shutter available

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the industrial series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.


Spec	ificati	on											
	Malkana			CFI	M/SONE A	T STATIC I	Pressure (p	os-inches c	of H ₂ O)				
Model	voitage	Frequency	inches of H ₂ O	0	0.05	0.075	0.1	0.125	0.25	0.375	RPM	Watts*	Watts**
	0001/	0011-	CFM	2677	2581	2535	2488	2440	2170	2050	1550	004	070
40005	220V	60Hz	Sones	20.0	20.0	19.7	19.4	19.3	18.9	19.9	1550	294	270
40GSE	240V	50Hz	CFM	2135	2067	2035	2000	1965	1800	1480	1440	164	151
	2400	50HZ	Sones	9.0	8.5	8.7	8.7	8.7	13.0	14.2	1440	104	131

Performance certified is for installation type A: Free Inlet, Free Outlet. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free Inlet hemispherical sone levels. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

High Pressure Series

Model	Α	В	С	D	E	F	G
45GSC	450	570	540	-	320	297	12
50GSC	500	659	620	560	355	315	15
60GSC	620	760	720	650	400	320	15

. ..

. . .

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the industrial series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

45GSC/50GSC/ 60GSC

- Single phase
- · Reversible by adjusting wiring and blade
- Bell mouth construction with distinctive wave-shaped blade
- Durable powder coating
- High performance motor with thermal cutoff
- Ambient temperature range from -10°C to +50°C
- · Possible to install horizontally or vertically
- Optional Shutter available

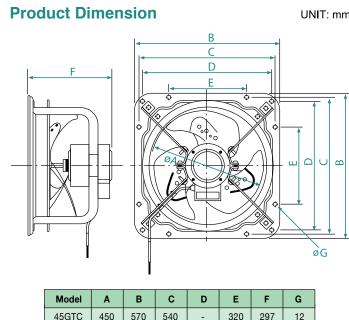
Specification											
Model no.	Voltage	Frequency	CFM/SONE	AT STATIC	Pressure (RPM	Watts*	Watts**			
	Vollago		inches of H_2O	0	0.2	0.3	0.4		FOR AMCA	FOR IEC	
	220V	60Hz	CFM	3278	3131	3001	2795	1562	0.40	205	
45GSC	2200	00112	Sones	10	10.4	10.6	10.8	1563	346	325	
45650	240V	240V 50Hz	CFM	2854	2648	2454	2030	1430	277	241	
			Sones	7.8	7.7	7.8	9.4	1430	211	241	
	220V	60Hz	CFM	3884	3443	3090	2501	1080	247	206	
50GSC			Sones	10.9	11.3	11.5	11.8	1060	347	326	
50030	0.401/	5011-	CFM	3354	2854	2266	912	968	293	271	
	240V	50Hz	Sones	11.7	13.8	14.5	15.4	900	293	271	
	0001		CFM	5038	4349	3943	3560	1099	384	261	
60GSC	220V	60Hz	Sones	10.1	9.8	9.5	10.1	1088	364	361	
00030	0401/	50U-	CFM	4402	3855	3366	2972	980	289	262	
	240V	50Hz -	Sones	10.3	8.6	8.5	11.5	980		263	

Performance certified is for installation type A: Free Inlet, Free Outlet. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free Inlet hemispherical sone levels.

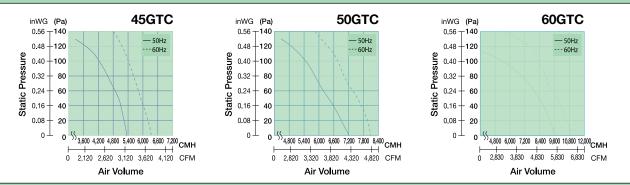
the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H2O.

** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

High Pressure Series

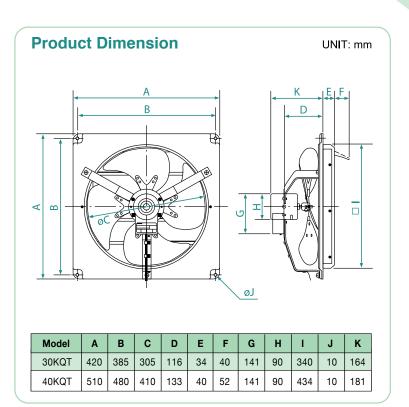


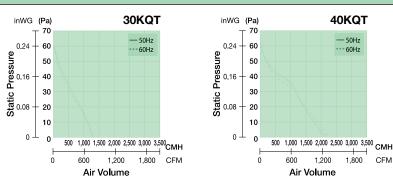
45GTC/50GTC/ 60GTC


UNIT: mm

- Three Phase
- Reversible by adjusting wiring and blade
- · Bell mouth construction with distinctive wave-shaped blade
- Durable powder coating
- High performance motor with thermal cutoff
- Ambient temperature range from -10°C to +50°C
- Possible to install horizontally or vertically
- Optional Shutter available

Performance Data [380V 50/60Hz]


Model	Α	В	С	D	Е	F	G
45GTC	450	570	540	-	320	297	12
50GTC	500	659	620	560	355	304	15
60GTC	620	760	720	650	400	320	15

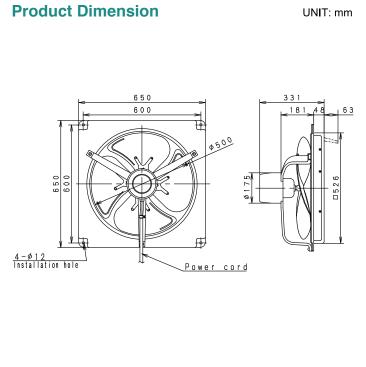

S	be	cifi	cati	on
		U 111	outi	011

Model No.	Voltage	Hz	Consumption	RPM	Air Vo	olume	Noise	Weight
Model No.	[V]	п2	[W]	[min⁻¹]	[CMH]	[CFM]	[dB(A)]	[Kg]
45GTC	45070 000		220	1,450	5,520	3,249	52	18.5
45610	380	60	330	1,690	6,420	3,779	56	10.0
50GTC	000	50	320	1,400	6,960	4,097	54	28.5
50010	380	60	475	1,590	8,010	4,715	58	20.0
60GTC	380	50	310	940	9,420	5,544	49	34
budic	380	60	450	1,070	10,920	6,427	53	01

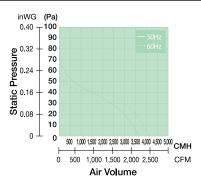
Shutter Series

Performance Data [220V 50Hz/60Hz]

Specification											
Model No.	Voltage [V]	Frequancy	Consumption [W]	RPM	Air Volume		Noise	Weight			
		[Hz]		[min ⁻¹]	[CMH]	[CFM]	[dB(A)]	[Kg]			
201407	220	220	220	220	50	42	1,185	1,220	718	46	4.9
30KQT		60	51	1,255	1,270	747	47				
40KOT	000	50	61	1,175	2,060	1,212	49	6.4			
40KQT	220 -	60 76 1,260 2,190		2,190	1,289	51	0.4				

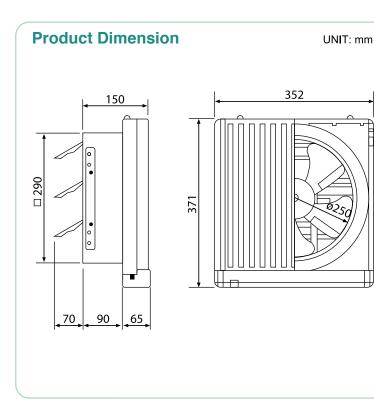

- Used in factories, warehouses or other locations in where powerful ventilation is necessary
- Metal large blade assembly for abundant air volume
- Powerful, efficient and durable condenser motor
- Ambient temperature range from -10°C to +50°C

Shutter Series



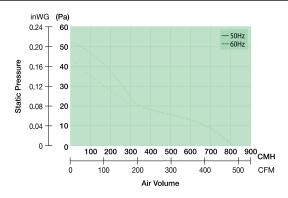
50AEQ2

- · Used in factories, warehouses or other locations in where powerful ventilation is necessary
- · Metal large blade assembly for abundant air volume
- · Powerful, efficient and durable condenser motor
- Ambient temperature range from -10°C to +50°C



Performance Data [220V 50Hz/60Hz]

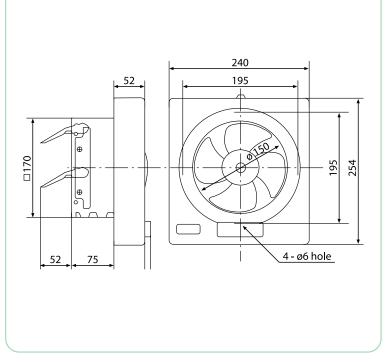
Specification											
Model No.	Voltage [V]	age Frequancy] [Hz]	Consumption	RPM [min ⁻¹]	Air Vo	olume	Noise	Weight [Kg]			
			[W]		[CMH]	[CFM]	[dB(A)]				
504500	000	50	108	920	3,630	2,137	54	11.5			
50AEQ2	220	60) 130		4,200	2,472	58	11.0			


Filter Series

- Recommend to use in kitchen
- Automatic Shutter
- Perforated aluminum filter with hydrophobic coating
- · Large capacity oil cup
- Oil indicator on oil cup
- High exhaust air volume under actual usage condition (20Pa)

Performance Data [220V 50Hz/60Hz]

Specification Air Volume Voltage Frequency Consumption RPM Noise Weight Instailation space Model No. [mm] [W] [dB(A)] [V] [min⁻¹] [Kg] [Hz] [CMH] [CFM] 50 34 1,100 835 491 42 25AUFA 220 2.8 300 x 300 34 1,060 820 483 42 60


Automatic Shutter Series

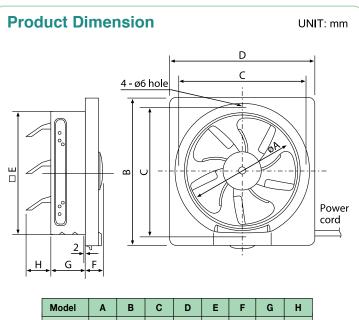
Product Dimension

UNIT: mm

- Condenser motor with thermal cutoff
- Lubricated sintered bush for long life operation
- High performance propeller fan adopted
- Automatic shutter with plastic cushions
- Orifice equipped with oil cup

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the wall mount series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specification											
Model	Voltage	Frequency	CFM/SONE AT	STATIC Pre	ssure (ps-inc	RPM	Watts*	Watts**			
Woder			inches of H2O	0	0.025	0.05		FOR AMCA	FOR IEC		
154401	220V	50Hz	CFM Sones	157 2.5	122 1.9	65 2.3	1533	20.6	19.0		
15AAQ1	240V	60Hz	CFM Sones	154 1.7	120 1.4	63 2.1	1453	20.1	19.0		


Performance certified is for installation type A: Free inlet, Free outlet. Performance ratings include the effects of a backdraft shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. Speed (RPM) shown in nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free inlet hemispherical sone levels.

the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

**the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Automatic Shutter Series

Model	Α	В	С	D	E	F	G	Н
20AUH	200	306	260	302	240	52	90	80
25AUH	250	356	310	352	290	38	90	63
30AUH 11	300	406	360	402	340	38	90	78

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the wall mount series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specification

20AUH/25AUH/ 30AUH 11

- HP condenser motor with thermal cutoff
- Well lubricated bearing for long life operation
- Propeller fan incorporated with advanced blade design (except 30AUH 11)
- Automatic shutter
- Single speed

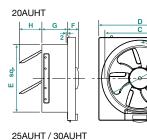
Specific	Specification											
Model	Voltage	Frequency	CFM/SONE A	T STATIC Pre	ssure (ps-inch	nes of H2O)	RPM	Watts*	Watts**			
Wiodel	Voltage	rrequeriey	inches of H2O	0	0.025	0.05		FOR AMCA	FOR IEC			
20AUH	220V	60Hz	CFM Sones	355 2.5	314 2.5	196 1.7	1410	32.4	28.5			
25AUH	220V	60Hz	CFM Sones	514 1.8	426 1.5	290 1.8	1200	37.8	33.0			
30AUH 11	220V	60Hz	CFM Sones	572 1.0	453 1.7	235 2.6	856	37.0	33.0			

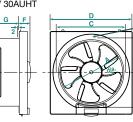
Performance certified is for installation type A: Free inlet, Free outlet. Performance ratings include the effects of a backdraft shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free inlet hemispherical sone levels. *the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

**the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Automatic Shutter Series

25AUHT/


30AUHT


Product Dimension

UNIT: mm

- · HP condenser motor with thermal cutoff
- · Well lubricated bearing for long life operation
- · Propeller fan incorporated with advanced blade design (except 30AUHT)
- Automatic shutter
- Single speed

Specification

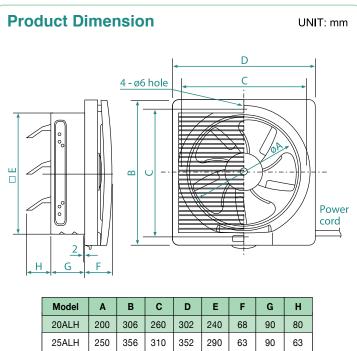
Model	Α	В	С	D	Е	F	G	Н
20AUHT	200	306	260	302	240	52	90	80
25AUHT	250	356	310	352	290	38	90	63
30AUHT	300	406	360	402	340	38	90	78

KDK Company, Division of PES and Panasonic Ecology Systems (Thailand) Co., Ltd. certify that the wall mount series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

opecin	Specification											
Model	Voltage	Frequency	CFM/SONE A	T STATIC	Pressure (of H2O)	RPM	Watts*	Watts**			
model	ronago		inches of H2O	0	0.02	0.04	0.06		FOR AMCA	FOR IEC		
	220V	cou-	CFM	356	315	271	227	1343	24.5	22		
20AUHT		60Hz	Sones	2.3	2.4	1.8	2.8	1343	24.5	22		
204011	240V	50Hz	CFM	338	294	253	171	1234	23.5	21.5		
			Sones	2.1	2.4	2	3.5	1234	23.5	21.5		
	220V	220V 60Hz	CFM	515	421	330	227	1113	34.3	01		
25AUHT			Sones	2.5	2.3	1.9	3			31		
254011	240V	50Hz	CFM	527	465	400	347	1143	35.2	32		
	2400	30112	Sones	5.8	5.6	5.2	4.8	1143	55.2	32		
	2201/	60H-	CFM	586	486	335	174	874	40.4	38		
30AUHT	220V	60Hz	Sones	2.2	2.2	4.1	2.4	674	40.4	30		
JUAUHI	2401/	240V 50Hz	CFM	624	565	491	312	935	41.5	39		
	2700		Sones	3.7	3.6	3.6	4.1	930	41.5			

Performance certified is for installation type A: Free inlet, Free outlet. Performance ratings include the effects of a backdraft shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H2O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free inlet hemispherical sone levels. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Automatic Shutter Louver Series


20ALH/25ALH/

30ALF 11

· HP condenser motor with thermal

· Well lubricated bearing for long life

 Propeller fan incorporated with advanced blade design (except

30ALF 11

300

406

360

402

KDK Company, Divisio Systems Guangdong series models shown AMCA Seal. The rating procedures performe Publication 211 and A with the requirements of the AMCA Certified Ratings Program.

- - **! f**! - -

240	68	90	80	
290	63	90	63	
340	63	90	78	
on of PE	ES an	nd Pan	asonio	Ecology
Co., Ltd	. cert	ify tha	t the w	all mount
		-		bear the
				tests and
,				
d in	acco	rdance	e with	n AMCA
MCA P	ublica	ation 3	311 an	d comply

cutoff

operation

30ALF 11)

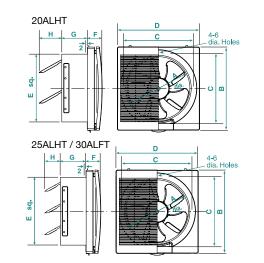
Specific	ation								
Model	Voltage	Frequency	CFM/SONE A	T STATIC Pre	ssure (ps-inch	nes of H2O)	RPM	Watts*	Watts**
Wiodel	Voltage	requerey	inches of H ₂ O	0	0.025	0.05		FOR AMCA	FOR IEC
20ALH	220V	60Hz	CFM Sones	328 3.5	280 3.2	170 3.4	1385	32.8	28.5
25ALH	220V	60Hz	CFM Sones	420 2.7	372 2.7	232 4.6	1097	37.5	33.0
30ALF 11	220V	60Hz	CFM Sones	447 2.0	288 2.7	154 2.2	746	37.1	33.0

Performance certified is for installation type A: Free inlet, Free outlet. Performance ratings include the effects of an inlet grill and backdraft shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free inlet hemispherical sone levels. *the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

**the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Automatic Shutter Louver Series

20ALHT/ 25ALHT/


30ALFT

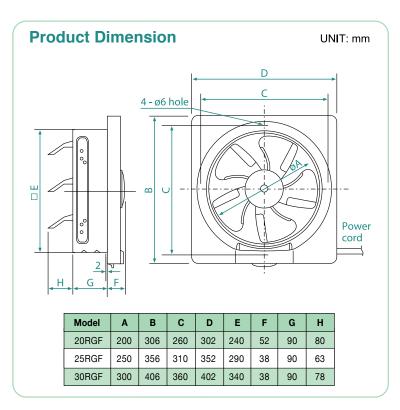
Product Dimension

UNIT: mm

- HP condenser motor with thermal cutoff
- Well lubricated bearing for long life operation
- Propeller fan incorporated with advanced blade design (except 30ALFT)
- Automatic shutter
- Single speed

. ..

Model	Α	В	С	D	Е	F	G	н
20ALHT	200	306	260	302	240	68	90	80
25ALHT	250	356	310	352	290	63	90	63
30ALFT	300	406	360	402	340	63	90	78


KDK Company, Division of PES and Panasonic Ecology Systems (Thailand) Co., Ltd. certify that the wall mount series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specifi	cation									
Model	Voltage	Frequency	CFM/SONE	AT STATIC	Pressure (p	os-inches of	f H2O)	RPM	Watts*	Watts**
model	Vollago		inches of H_2O	0	0.02	0.04	0.06		FOR AMCA	FOR IEC
	220V	60Hz	CFM	327	294	256	162	1277	24.2	22
20ALHT	2200	0012	Sones	2.8	2.7	4.3	5.3	1277	24.2	22
ZUALITI	240V	50Hz	CFM	300	274	234	141	1228	23.5	21.5
	2400	50112	Sones	2.6	2.5	3.8	3.8	1220	20.0	21.5
	220V	60Hz	CFM	465	409	350	250	1116	40	36
25ALHT	2200	0012	Sones	3.5	3.2	3	5.4	1110	40	50
ZJALITI	240V	50Hz	CFM	468	418	371	327	1152	35.2	32
	2400	SUHZ	Sones	5.5	5.9	5	5.2	1152	00.2	52
	220V	60Hz	CFM	503	374	230	119	833	42	38
30ALFT	2200	00H2	Sones	2.6	3	3.1	2.5	033	42	38
JUALFT	240V	50Hz	CFM	571	494	406	247	921	44.3	40
	2400	30HZ	Sones	3.8	3.7	5.1	3.8	521	44.5	40

Performance certified is for installation type A: Free inlet, Free outlet. Performance ratings include the effects of an inlet grill and backdraft shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free inlet hemispherical sone levels. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

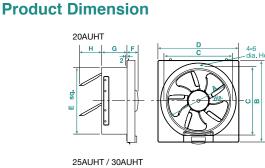
20RGF/25RGF/ 30RGF

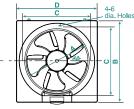
- Reversible
- On-off and reverse operated by pull cord switch

Reversible Series

- HP condenser motor with thermal cut-off
- Well lubricated bearing for long life operation
- Propeller fan incorporated with advanced blade design (except 30RGF)
- Shutter operated by pull cord

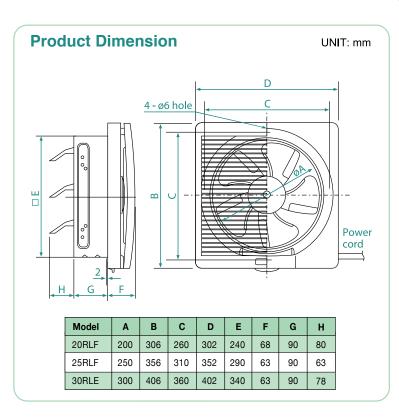
Specification												
Model No.		Voltage	Frequency	Consumption	RPM		olume	Noise	Weight	Installation space		
		[V]	[Hz]	[W]	[min -1]	[CMH]	[CFM]	[dB(A)]	[kg]	[mm]		
	Exhaust		50	20	1,290	580	341	36				
00005	LAHaust	220	60	25	1,440	650	383	39	0.0	050 x 050		
20RGF	listel.e	220	50	16	1,100	405	238	46	2.2	250 x 250		
	Intake		60	17	1,170	355	209	48				
	Exhaust		50	29	1,120	945	556	38				
05005	LANdust	220	60	34	1,145	950	559	39	2.4	300 x 300		
25RGF	latel.	220	50	20	900	640	377	45	2.1	000 x 000		
	Intake		60	24	995	645	380	44				
	Exhaust		50	31	990	1,165	686	39				
20000	LAHaust	220	60	33	995	1,150	677	38	2.8	350 x 350		
30RGF	lists list	220 –	50	24	905	800	471	43	2.0	3 350 x 350		
Intake		60	24	810	745	428	42					


Reversible Series


20RGFT/25RGFT/ 30RGFT

Reversible

- On-off and reverse operated by pull cord switch
- HP condenser motor with thermal cut-off
- Well lubricated bearing for long life operation
- Propeller fan incorporated with advanced blade design (except 30RGFT)
- Shutter operated by pull cord


UNIT: mm

Model	A	В	С	D	Е	F	G	Н
20RGFT	200	306	260	302	240	52	90	80
25RGFT	250	356	310	352	290	38	90	63
30RGFT	300	406	360	402	340	38	90	78

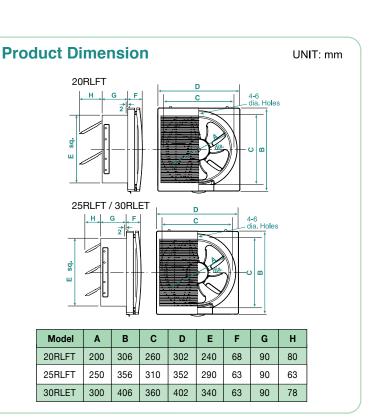
Specifi	cation										
Model No.		Voltage	Frequency	Consumption	RPM	Air Vo	olume	Noise	Weight	Installation space	
model No.		[V]	[Hz]	[W]	[min -1]	[CMH]	[CFM]	[dB(A)]	[kg]	[mm]	
	E. harrest		50	20	1,260	580	341	36			
	Exhaust	220	60	24	1,410	630	371	39	0.0	250 x 250	
20RGFT Intake		220	50	15	1,150	405	238	46	2.2	250 x 250	
	make		60	17	1,140	355	209	46			
	E. I. a. a.		50	27	1,090	945	556	38			
AFRAFT	Exhaust		60	31	1,110	950	559	39	2.4	300 x 300	
25RGFT	Intake	220	50	21	1,010	600	353	45	2.7	000 x 000	
	make		60	23	970	560	330	44			
			50	31	885	1,165	686	39			
ANDOLL	Exhaust		60	38	800	1,000	589	38	2.8	350 x 350	
30RGFT	Intoko	220	50	24	840	700	412	43	2.0	3 350 x 350	
	Intake		60	26	810	680	400	42			

Reversible Louver Series

-

20RLF/25RLF/ 30RLE

- Reversible
- On-off and reverse operated by pull cord switch
- HP condenser motor with thermal cutoff
- Well lubricated bearing for long life operation
- Propeller fan incorporated with advanced blade design (except 30RLE)
- Shutter operated by pull cord


Specification												
Model No.		Voltage [V]	Frequency [Hz]	Consumption [W]	RPM [min -1]			Noise [dB(A)]	Weight [kg]	Installation space		
		[v]	נייבן		[]	[CMH]	[CFM]		1.01			
	Exhaust		50	20	1,275	546	321	39				
	20RLF		60	25	1,290	600	353	43	2.4	250 x 250		
20RLF	Intake	220	50	17	1,225	385	227	46	2.4	200 X 200		
	тпаке		60	17	1,145	340	200	49				
	Typeyet		50	29	1,060	876	516	41				
	Exhaust		60	34	1,060	835	491	41	2.7	300 x 300		
25RLF	Intake	220	50	20	1,020	570	335	45	2.1	000 x 000		
	make		60	24	970	573	338	43				
			50	31	876	990	583	44				
	Exhaust		60	33	885	945	556	43	0.1	350 x 350		
30RLE	Intelse	220	50	24	850	730	430	43	3.1	1 350 X 350		
	Intake		60	24	776	690	406	44				

Reversible Louver Series

20RLFT/25RLFT/ 30RLET

- Reversible
- On-off and reverse operated by pull cord switch
- HP condenser motor with thermal cutoff
- Well lubricated bearing for long life operation
- Propeller fan incorporated with advanced blade design (except 30RLET)
- Shutter operated by pull cord

Specifie	Specification												
Model No.		Voltage	Frequency	Consumption	RPM	Air Vo	olume	Noise	Weight	Installation space			
Woder No.		[V]	[Hz]	[W]	[min -1]	[CMH]	[CFM]	[dB(A)]	[kg]	[mm]			
	–		50	20	1,240	548	321	39					
	Exhaust	220	60	24	1,290	570	335	43	2.4	050 x 050			
20RLFT	20RLFT Intake		50	15	1,190	370	218	46	2.4	250 x 250			
	III.ake		60	17	1,180	340	200	46					
			50	29	1,100	840	494	43					
	Exhaust	220	220	220	60	33	1,100	835	491	43	2.7	300 x 300	
25RLFT	Intake	220	50	21	1,035	580	341	43		000 x 000			
	III.ake		60	23.5	1,035	560	330	44.5					
			50	31	890	990	583	44					
	Exhaust		60	38	880	945	558	43	3.1	350 x 350			
30RLET Intake		220	50	25	770	600	353	43		350 X 350			
	make		60	26	770	600	353	44					

Metallic Series

Product Dimension UNIT: mm 4 - ø6 hole E F В Е F Model Α В С D 20ASB/20ASB 05 200 300 312 240 50 90 25ASB/25ASB 05 250 350 362 290 45 90 30ASB/30ASB 05 300 400 412 45 90 340

KDK Company, Division of PES and Panasonic Ecology Systems Guangdong Co., Ltd. certify that the wall mount series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

20ASB/20ASB05/ 25ASB/25ASB05/ 30ASB/30ASB05

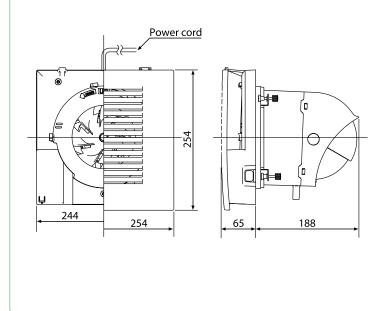
- Condenser motor with thermal cutoff
- Well lubricated bearing for long life operation
- High performance propeller fan adopted
- Automatic shutter
- Powder painted metallic orifice, blade and oil cup
- Detachable oil cup

Specific	ation								
Model	Voltage	Frequency	CFM/SONE AT	STATIC Pre	ssure (ps-inc	hes of H ₂ O)	RPM	Watts*	Watts**
Woder	Voltage	Trequency	inches of H_2O	0	0.025	0.05		FOR AMCA	FOR IEC
20ASB	220V	60Hz	CFM Sones	330 1.7	259 1.9	183 3.9	1358	25.5	21.5
20430	240V	50Hz	CFM Sones	296 1.5	198 1.7	151 3.2	1252	22.4	19.5
20ASB 05	240V	50Hz	CFM Sones	296 1.5	198 1.7	151 3.2	1252	22.4	19.5
25ASB	220V	60Hz	CFM Sones	522 1.9	414 1.6	240 2.2	1277	35.5	30.5
	240V	50Hz	CFM Sones	486 2.0	434 2.0	314 2.4	1194	35.1	29.5
25ASB 05	240V	50Hz	CFM Sones	486 2.0	434 2.0	314 2.4	1194	35.1	29.5
30ASB	220V	60Hz	CFM Sones	637 2.0	400 2.7	85 2.2	1088	39.8	34.5
JUAGE	240V	50Hz	CFM Sones	706 2.9	620 2.3	498 2.2	1175	38.1	34
30ASB 05	240V	50Hz	CFM Sones	706 2.9	620 2.3	498 2.2	1175	38.1	34

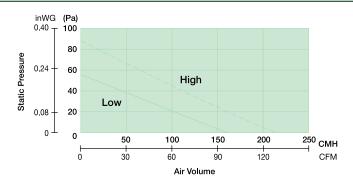
Performance certified is for installation type A: Free inlet, Free outlet. Performance ratings include the effects of a backdraft shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free inlet hemispherical sone levels. *the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

**the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

High Pressure Deluxe Series

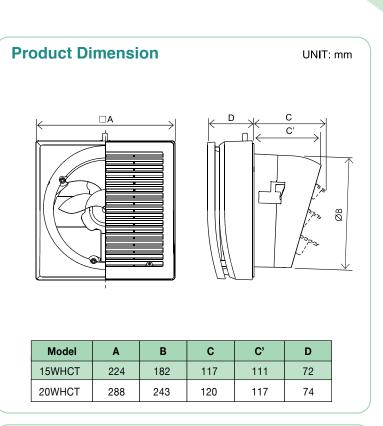


15WJA


Product Dimension

UNIT: mm

- · Rain proof and wind resistance
- Condenser motor with thermal cutoff
- Well lubricated bearing for long life operation
- Highly efficient axial fan adopted
- Electrically operated shutter with dome shaped hood
- Integral rocker switch for speed selectable



Performance Data [220V 50Hz/60Hz]

Specifi	Specification												
Model No. Voltage Frequency Consumption RPM Air Volume Noise Weight Installation Size													
Woder NO.	[V]	[Hz]		[W]	[min⁻¹]	[CMH]	[CFM]	[dB(A)]	[Kg]	[mm]			
		50	Hi	22	1,878	205	121	46					
15WJA	220	00	Lo	19	1,325	145	85	36	2.4	ø 186 - ø 190			
ISVVJA	220		Hi	27	2,012	220	129	48	2.4	Ø 186 - Ø 190			
		60	Lo	20	1,394	153	90	38					

Electric Shutter Series

KDK Company, Division of PES and Panasonic Ecology Systems (Thailand) Co., Ltd. certify that the window mount series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

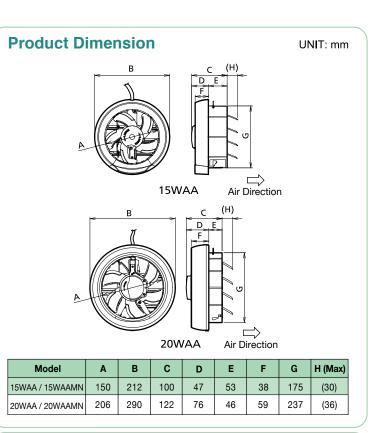
Specification

opeeni	cation														
Model	Voltage	Frequency	CFM/SONE A	T STATIC	Pressure	(ps-inches	s of H ₂ O)	RPM	Watts*	Watts**					
Model	Voltago		inches of $H_{_2}O$	0	0.05	0.1	0.15		FOR AMCA	FOR IEC					
15WHCT	220V	60Hz	CFM Sones	127 3.0	94 3.6	63 3.5	31 3.9	2440	14.6	13					
1500001	240V	50Hz	CFM Sones	127 2.3	95 2.7	68 3.5	50 2.8	2537	16	15					
2014/11/07	220V	60Hz	CFM Sones	250 3	188 3.9	127 4.5	78 4.2	1517	24.4	22					
20WHCT	220V 240V					-	50Hz	CFM Sones	230 2.8	147 3.8	103 3.4	53 4	1333	23.4	22

Performance certified is for installation type A: Free Inlet, Free Outlet. Performance ratings include the effects of inlet grille and shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H_2O . The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free Inlet hemispherical sone levels. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H_2O .

** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

20WHCT


- Electrically Operated Shutter
- Advance design hood structure to prevent from rain and wind.
- Suitable for thickness of 3mm to 25mm
- Simple and Easy installation, no need of any silicon seal or gasket

Automatic Shutter Series

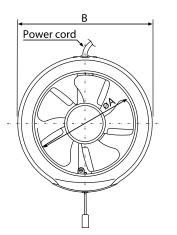
15WAA/15WAAMN/ 20WAA/20WAAMN

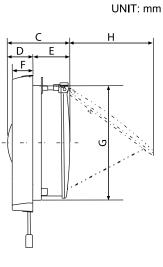
Automatic shutter

- High Performance Condenser motor with thermo cut-off
- Well lubricated bearing for long life operation
- Propeller fan incorporated with advance blade design.
- Removable blade for easy maintenance

KDK Company, Division of PES and Panasonic Ecology Systems (Thailand) Co., Ltd. certify that the window mount series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specifie	cation	l								
Model	Voltage	Frequency	CFM/SONE A	T STATIC	Pressure	(ps-inches	s of H ² O)	RPM	Watts*	Watts**
Woder	Vollage		inches of $H_{_2}O$	0	0.02	0.04	0.06		FOR AMCA	FOR IEC
15WAA	220V	60Hz	CFM Sones	124 3.6	109 4.5	91 4.1	79 4	2021	19.6	18
15WAAMN	240V	50Hz	CFM Sones	124 3.5	109 4.5	93 4.1	78 3.8	2062	18.2	16
20WAA	220V	60Hz	CFM Sones	206 3.7	147 3.8	124 3.5	94 3.3	1385	18.4	17
20WAAMN	240V	50Hz	CFM Sones	165 3.4	153 3.3	141 3.4	131 3.4	1375	18.6	17.5


Performance certified is for installation type A: Free Inlet, Free Outlet. Performance ratings include the effects of a shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free Inlet hemispherical sone levels. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.


** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Cord-operated Shutter Series

Product Dimension

Model	Α	В	С	D	E	F	G	Н
15WUD	150	210	97	43	54	37	177	149
20WUD	200	271	98	36	62	36	237	201

KDK Company, Division of PES and Panasonic Ecology Systems (Thailand) Co., Ltd. certify that the window mount series models shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and AMCA Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Specification

CFM/SONE AT STATIC Pressure (ps-inches of H₂O) Watts* Watts** Model RPM Voltage Frequency FOR AMCA inches of H₂O 0 0.01 0.02 0.03 FOR IEC 105 94 79 66 CFM 220V 60Hz 1425 9.7 8.9 0.9 0.9 2.2 2.4 Sones 15WUD 124 115 104 94 CFM 240V 50Hz 1722 10.3 9.5 1.6 1.8 3.7 Sones 1.4 inches of H₂O 0 0.02 0.03 0.04 CEM 129 88 188 112 220V 60Hz 980 19.2 17.9 0.8 1.2 1.8 1.4 Sones 20WUD CFM 168 221 141 118 1096 240V 50Hz 18.5 17.2 Sones 1.6 2.2 2.0 1.8

Performance certified is for installation type A: Free Inlet, Free Outlet. Performance ratings include the effects of a shutter. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free Inlet hemispherical sone levels. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

15WUD/ 20WUD

- HP condenser motor with thermal cutoff
- Well lubricated bearing for long life operation
- Propeller fan incorporated with advanced blade design
- Shutter operated by pull cord
- Metallic shutter axis

Ceiling	Mount	t Ventil	ation	Fan M	ode	el Co	omp	aris	on							
				CFN	//SOI		STAT	IC Pre	essure	(ps-ir	nches	of H₂C))			
Model no.	Voltage	Frequency	Speed	inches of H ₂ O	0	0.1	0.125		0.375		0.625		-	RPM	Watts*	Watts**
	220V	60Hz	_	CFM	41	28	25	-	-	-	-	-	-	810	11	10
17CUG				Sones	0.3	0.5	0.6	-	-	-	-	-	-	0.0		
/17CUGA	240V	50Hz	-	CFM	50	43	40	-	-	-	-	-	-	780	12	10.5
				Sones CFM	0.3 83	0.4	0.6	- 44	-	-	-	-	-			
	220V	60Hz	-	Sones	0.5	0.6	0.6	1.4	-	-	-	-	-	610	16	15.5
24CUG				CFM	88	77	75	51	-	-	-	_	-			
	240V	50Hz	-	Sones	0.7	0.8	0.9	1.6	-	-	-	-	-	680	15.1	14
				CFM	101	90	88	64	-	-	-	-	-			
04000	220V	60Hz	-	Sones	0.7	0.8	0.9	1.5	-	-	-	-	-	750	18.2	16.5
24CDG	0.401/			CFM	105	91	86	64	-	-	-	-	-	700	18.6	175
	240V	50Hz	-	Sones	0.8	0.9	1.0	1.7	-	-	-	-	-	780	10.0	17.5
	220V	60Hz	_	CFM	109	99	96	75	47	-	-	-	-	860	23.6	22
24CHG	2200	0012	-	Sones	1.0	1.2	1.2	1.5	2.4	-	-	-	-	000	23.0	22
240110	240V	50Hz	_	CFM	116	100	94	72	33	-	-	-	-	890	23.5	22
				Sones	1.2	1.3	1.4	1.6	2.1	-	-	-	-		20.0	
	220V	60Hz	Hi	CFM	182	162	156	118	78	37	-	-	-	570	33	33
27CHH				Sones CFM	1.1 198	1.2 179	1.3 172	1.7 126	2.2 78	2.5 18	-	-	-			
	240V	50Hz	Hi	Sones	1.4	1.5	1.6	1.8	2.3	2.5	-	-	-	609	37	34
				CFM	226	202	196	163	127	91	53	-	-			
	220V	60Hz	Hi	Sones	1.2	1.3	1.4	1.7	2.2	2.7	3.3	_	_	580	48	48
32CDH				CFM	257	236	230	192	147	99	53	-	-			
	240V	50Hz	Hi	Sones	1.6	1.7	1.8	1.9	2.5	3.0	3.6	-	-	675	56	50
38CDG	220V	60Hz	Hi	CFM	344	323	317	290	261	230	197	163	126	<u> </u>	00	- 00
30000	2200	00112		Sones	3.1	3.2	3.2	3.3	3.6	4.1	4.5	5.7	5.7	628	98	98
38CDG 05	240V	50Hz	Hi	CFM	387	367	362	336	305	259	212	165	108	737	118	107
38CDG	2400	00112		Sones	4.0	4.1	4.2	4.3	4.4	4.7	5.3	5.7	6.2	101	110	107
	220V	60Hz	Hi	CFM	88	88	88	88	63	34	5	-	-			
24JRB				Sones	0.7	1.0	1.0	1.3	1.7	1.8	3.1	-	-	853	10	8
	240V	50Hz	Hi	CFM	88	88	88	88	63	34	5	-	-			
				Sones	0.7	1.0	1.0	1.3	1.7	1.8	3.1	-	-			
	220V	60Hz	Hi	CFM Sones	88 0.6	88 0.9	88 1.0	88 1.4	63 1.6	34 1.9	5 3.2	-	-			
24JAB				CFM	88	88	88	88	63	34	5.2	-	-	839	10	8
	240V	50Hz	Hi	Sones	0.6	0.9	1.0	1.4	1.6	1.9	3.2	_	_			
				CFM	55	40	37	20	-	-	-	-	-			
	220V	60Hz	-	Sones	0.3	0.7	0.8	1.6	-	-	-	-	-	495	13	12
24CMUA	04014	5011-		CFM	55	44	41	24	-	-	-	-	-	500		10
	240V	50Hz	-	Sones	0.3	0.8	1.0	1.4	-	-	-	-	-	562	14	13
	220V	60Hz		CFM	94	85	83	72	54	-	-	-	-	681	25	23
24CMHA	2200		-	Sones	1.0	1.4	1.5	1.9	2.3	-	-	-	-	001	20	23
LIGHTA	240V	50Hz	_	CFM	108	98	95	77	44	-	-	-	-	753	27	25
		50112		Sones	1.4	1.8	1.9	2.1	2.2	-	-	-	-	.00		20
	220V	60Hz	-	CFM	208	184	178	144	108	79	-	-	-	615	46	43
27CMHA				Sones	1.6	1.7	1.7	2.3	3.2	3.5	-	-	-	-	-	
	240V	50Hz	-	CFM	219	194	188	150	110	70	-	-	-	669	46	43
				Sones	1.9	1.9	2.0	2.4	3.4	3.1	-	-	-			

Performance certified is for installation type B: Free inlet, Ducted outlet. Performance ratings include the effects of an inlet grille and backdraft shutter. Speed (RPM) shown is nominal. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type B: Free inlet hemispherical sone levels. * the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Low No	oise T	ype C	abin	et Fan I	Moc	lel C	Com	pari	ison								
	Valtana	F	Orneral	C	FM/SC	ONE A	T STA	TIC P	ressu	re (ps	-inche	s of H	12 O)		DDM	Wattat	Wattatt
Model no.	voitage	Frequency	Speed	inches of H ₂ O	0	0.1	0.125	0.25	0.375	0.5	0.75	1	1.25	1.5	RPM	watts	Watts**
	220V	60Hz	Hi	CFM	114	105	102	87	65	-	-	-	-	-	1,460	26	23
12NSB	2200	00HZ		Sones	1.5	1.4	1.4	1.3	1.4	-	-	-	-	-	1,400	20	23
ILITOD	240V	50Hz	Hi	CFM	102	90	86	67	39	-	-	-	-	-	1,342	27	22
	2100	00112		Sones	2.0	1.7	1.6	1.4	1.5	-	-	-	-	-	1,012		
	220V	60Hz	Hi	CFM	200	183	177	149	118	83	-	-	-	-	1,520	45	42
15NSB				Sones	2.7	2.5	2.4	2.3	2.2	2.0	-	-	-	-			
	240V	50Hz	Hi	CFM	193	177	172	139	94	20	-	-	-	-	1,373	47	37
				Sones	3.7	3.4	3.2	2.6	2.5	2.8		-	-	-			
	220V	60Hz	Hi	CFM	274	261	258	241	222	196	137	-	-	-	1,470	80	73
18NSB				Sones CFM	3.3	3.1 263	3.0 259	2.9 232	2.7 200	2.6 163	2.7 34	-					
	240V	50Hz	Hi	Sones	281 4.8	4.4	4.4	3.8	3.4	3.0	2.9	-	-	- 1	1,342	84	68
				CFM	417	399	395	373	347	318	2.5	-	-	_			
	220V	60Hz	Hi	Sones	4.0	3.9	3.9	3.9	3.6	3.5	3.4	-	_	_	1,420	128	119
18NFB				CFM	429	406	400	381	344	290	78	-	-	-		1.05	
	240V	50Hz	Hi	Sones	5.6	5.4	5.4	5.1	4.6	4.3	4.2	-	-	-	1,327	135	104
			1.12	CFM	469	459	456	444	433	413	354	275	-	-	1 000	170	150
20NSB	220V	60Hz	Hi	Sones	4.0	4.0	3.9	3.8	3.9	4.0	4.1	4.2	-	-	1,380	170	159
201130	0.401/		Hi	CFM	517	500	495	464	424	382	265	110	-	-	1,328	175	135
	240V	50Hz		Sones	6.0	5.8	5.8	5.4	5.1	4.8	4.5	4.5	-	-	1,020	175	100
	0001	60Hz	Hi	CFM	655	642	640	625	611	597	555	505	440	-	1,400	350	310
23NLB	220V	60HZ		Sones	6.0	6.0	5.9	5.9	5.7	5.7	5.8	5.8	5.8	-	1,400	330	510
LONLD	240V	50Hz	Hi	CFM	688	670	664	642	614	579	493	388	199	-	1,342	347	260
	2400	30112		Sones	8.8	8.6	8.4	8.1	8.0	7.6	7.2	6.7	6.6	-	1,012	011	200
	220V	60Hz	Hi	CFM	940	924	919	899	877	857	790	710	610	502	1,380	460	425
25NSB	2201	00112		Sones	7.1	7.1	7.1	7.0	6.8	6.8	6.7	6.7	6.7	6.9	,		
	240V	50Hz	Hi	CFM	963	938	935	906	868	822	719	567	395	-	1,305	481	370
				Sones	10.1	9.8	9.7	9.3	9.2	8.8	8.0	7.5	8.2	-			
	220V	60Hz	Hi	CFM		1,000		975	954	933	875	803	710	590	1,420	680	520
25NFB				Sones	8.2	8.2	8.2	8.2	7.9	7.9	7.8	7.6	7.5	7.5			
	240V	50Hz	Hi	CFM			1,040			922	811	660	473	-	1,330	537	430
				Sones	12.1	11.9	11.5	11.1	10.6	9.8	8.7	8.7	10.3	-			

Performance certified is for installation type D: Ducted inlet, Ducted outlet.

Performance ratings do not include the effects of appurtenances (accessories), Speed (RPM) shown is nominal.

Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5ft (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation Type D: ducted inlet hemispherical sone levels. Ratings do not include the effect of duct end correction.

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

LOW N	oise	Type C	abinet Fa	an (Three Ph	ase Ser	ies) IVI	odel	Comp	arison	(Non-AN	ICA Certified)
Model No.	Phase	Voltage	Frequency	Comsumption	RPM		olume	Noise	Weight	Duct Size	Impeller Diameter
		[V]	[Hz]	[W]	[min ⁻¹]	[CMH]	[CFM]	[dB(A)]	[Kg]	[mm]	[mm]
25SWC	3	380	50	940	1,375	4,000	2,354	43	60	050 500	250
255WC	3	300	60	1,450	1,530	4,500	2,648	45	60	250 x 500	250
25SMC	3	380	50	1,180	1,345	5,200	3,060	45	60	050 700	250
20510	3	360	60	1,750	1,470	5,500	3,237	46	00	250 x 700	250
OONIXO	3	380	50	600	1,295	2,600	1,530	44	28	ø250	280
28NXC		380	60	840	1,380	2,650	1,560	45	20	∞250	200

Note: The value in Specification table are representative characteristic value at 380V, 50/60Hz

RPM data is for reference only. Values may vary subject to different conditions. The above Low Noise Type Cabinet Fan (Three Phase Series) Model are not licensed to bear the AMCA Certified Ratings Seal.

Indust	trial Ve	entilati	on Fan	Мо	del C	Comp	oaris	on							
	Vallara	F	C	CFM/SC		T STAT	IC Pre	ssure (ps-incl	nes of H	I₂O)			Watts*	Watts**
Model no.	voitage	Frequency	inches of H₂O	0	0.05	0.075	0.1	0.125	0.25	0.375	0.5	0.75	RPM	FOR AMC	FOR IEC
	220V	60Hz	CFM	788	742	715	686	647	-	-	-	-	1570	61	57
25GSE	2200	00112	Sones	4.9	4.7	4.5	4.5	4.6	-	-	-	-	1570	01	57
	240V	50Hz	CFM	701	657	633	600	565	187	-	-	-	1400	48	44
	2401	00112	Sones	3.8	3.6	3.6	3.5	3.6	8.6	-	-	-	1100	10	
	220V	60Hz	CFM	1308	1247	1217	1184	1153	772	-	-	-	1460	100	110
30GSE	2200	00112	Sones	9.0	9.0	9.1	9.0	9.1	9.4	-	-	-	1460	129	119
OUGOL	240V	50Hz	CFM	1177	1119	1090	1058	1026	561	243	-	-	1315	106	98
	2400	50112	Sones	5.5	5.5	5.6	5.6	5.8	11.1	12.0	-	-	1315	100	90
	0001	60H -	CFM	1850	1788	1752	1712	1669	1456	600	-	-	1640	178	161
35GSE	220V	60Hz	Sones	11.9	11.6	12.0	12.4	13.6	14.6	13.4	-	-	1640	1/8	101
SOUSE	2401/	50H -	CFM	1615	1548	1506	1458	1411	1147	390	-	-	1405	100	100
	240V	50Hz	Sones	8.6	8.2	8.2	8.0	8.0	12.6	13.4	-	-	1435	130	122
			CFM	2677	2581	2535	2488	2440	2170	2050	-	-	1550	00.4	070
40GSE	220V	60Hz	Sones	20.0	20.0	19.7	19.4	19.3	18.9	19.9	-	-	1550	294	270
HUGGL		5011-	CFM	2135	2067	2035	2000	1965	1800	1480	-	-	1440	164	151
	240V	50Hz	Sones	9.0	8.5	8.7	8.7	8.7	13.0	14.2	-	-	1440	104	
Model no.	Valtaga	Frequence	CFN	I/SONE			Pressu	re (ps-i	inches	of H ₂ O		DDM	W	atts*	Watts**
would no.	Voltage	riequent	inches o	of H ₂ O	0		0.2	0	.3	0.4		RPM	FOR	AMCA	FOR IEC
	220V	60Hz	CFN		<u>3278</u> 10	3	3131 10.4)01).6	2795 10.8		1563	3	846	325
45GSC			CFN		2854	1	2648		54	2030					
	240V	50Hz	Son		7.8	•	7.7	-	.8	9.4		1430	2	277	241
			CFN		3884		3443		90	2501					
	220V	60Hz	Son	es	10.9		11.3		1.5	11.8		1080	3	347	326
50GSC	2401/	50U-	CFN	N	3354		2854		266	912					074
	240V	50Hz	Son	es	11.7		13.8	14	4.5	15.4		968	2	93	271
	220V	60Hz	CFN	N	5038	}	4349	39	943	3560		1000	0	004	261
60GSC	2200		Son		10.1		9.8	9	.5	10.1		1088	3	884	361
00030			CFN	vi i	4402)	3855	33	66	2972					

Performance certified is for installation type A: Free Inlet, Free Outlet. 1. For models 25/30/35/40GSC, Speed (RPM) shown is nominal; 2. but for models 45/50/60GSC, the Speed (RPM) and watts rating shown are at the static pressure of 0 inch of H2O. Performance is based on actual speed of test. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free Inlet hemispherical sone levels.

3855

8.6

3366

8.5

2972

11.5

980

289

263

50Hz

240V

CFM

Sones

* the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. ** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

4402

10.3

Indust	Industrial Ventilation Fan Model Comparison (Non-AMCA Certified)												
Model No.	Dhase	Voltage	Frequency	Comsumption	RPM	Air Vo	lume	Noise	Weight				
would no.	Filase	[V]	[Hz]	[W]	[min ⁻¹]	[CMH]	[CFM]	[dB(A)]	[Kg]				
45GTC	3	000	50	220	1,450	5,520	3,249	52	18.5				
49010	3	380	60	330	1,690	6,420	3,779	58	10.0				
FOOTO	3	200	50	320	1,400	6,960	4,097	54	28.5				
50GTC	3	380	60	475	1,590	8,010	4,715	58	20.0				
60GTC	3	380	50	310	940	9,420	5,544	49	34				
oudic	3	300	60	450	1,070	10,920	6,427	53	04				
ЗОКОТ	_	220	50	42	1,185	1,220	718	46	4.9				
SUNGI	_	220	60	51	1,255	1,270	747	47	4.5				
40KQT	-	220	50	61	1,175	2,060	1,212	49	6.4				
	-	220	60	76	1,260	2,190	1,289	51	0.4				
50AEQ2		220	50	108	920	3,630	2,137	54	11.5				
JUAEQ2	-	220	60	130	1,050	4,200	2,472	58	11.5				

Note: The value in Specification table are representative characteristic value at 220V, 50/60Hz. RPM data is for reference only. Values may vary subject to different conditions. The above Industrial Ventilation Fan Model are not licensed to bear the AMCA Certified Ratings Seal.

Wall Mo	ount Ven	tilation Fa	an Model C	ompari	son				
	Mallana		CFM/SONE AT	STATIC Pres	sure (ps-inc	hes of H ₂ O)	DDM	Watts*	Watts**
Model	Voltage	Frequency	inches of H ₂ O	0	0.025	0.05	RPM	FOR AMCA	FOR IEC
	220V	60Hz	CFM	157	122	65	1533	20.6	19.0
	2200	00H2	Sones	2.5	1.9	2.3	1000	20.0	19.0
15AAQ1	0.401/	50Hz	CFM	154	120	63	1453	20.1	19.0
	240V	50HZ	Sones	1.7	1.4	2.1	1400	20.1	19.0
	220V	60Hz	CFM	355	314	196	1410	32.4	28.5
20AUH	2200	00H2	Sones	2.5	2.5	1.7	1410	52.4	20.0
	0001/	60Hz	CFM	514	426	290	1200	37.8	33.0
25AUH	220V	00H2	Sones	1.8	1.5	1.8	1200	57.6	33.0
0000	0001/	COL 1-	CFM	572	453	235	856	37.0	33.0
30AUH 11	220V	60Hz	Sones	1.0	1.7	2.6	000	57.0	33.0
004111	220V	col 1-	CFM	328	280	170	1385	32.8	28.5
20ALH	2200	60Hz	Sones	3.5	3.2	3.4	1000	52.0	20.5
05 41 11	220V	60Hz	CFM	420	372	232	1097	37.5	33.0
25ALH	2200	00H2	Sones	2.7	2.7	4.6	1037	57.5	00.0
	220V	60Hz	CFM	447	288	154	746	37.1	33.0
30ALF 11	2200	00HZ	Sones	2.0	2.7	2.2	740	57.1	00.0
20ASB	220V	60Hz	CFM	330	259	183	1358	25.5	21.5
20A5B	2200	60HZ	Sones	1.7	1.9	3.9	1556	20.0	21.5
20ASB /	240V	50Hz	CFM	296	198	151	1252	22.4	19.5
20ASB 05	2400	50112	Sones	1.5	1.7	3.2	1252	22.4	19.5
25ASB	220V	60Hz	CFM	522	414	240	1277	35.5	30.5
23430	2200	00H2	Sones	1.9	1.6	2.2	1211	00.0	00.0
25ASB /	240V	50Hz	CFM	486	434	314	1194	35.1	29.5
25ASB 05	2401	50112	Sones	2.0	2.0	2.4	1134	55.1	23.5
30ASB	220V	60Hz	CFM	637	400	85	1088	39.8	34.5
JUASE	2200	0012	Sones	2.0	2.7	2.2	1000	39.0	54.5
30ASB /	240V	50Hz	CFM	706	620	498	1175	38.1	34.0
30ASB 05	2401	50112	Sones	2.9	2.3	2.2	1175	50.1	04.0

Model	Voltage	Frequency	CFM/SONE AT	STATIC F	Pressure (ps-inche	s of H₂O)	RPM	Watts*	Watts**
Model	Voltage	ricquency	inches of H ₂ O	0	0.02	0.04	0.06		For AMCA	FOR IEC
	0001/	COL 1-	CFM	356	315	271	227	1040	04.5	00
	220V	60Hz	Sones	2.3	2.4	1.8	2.8	1343	24.5	22
20AUHT	240V	50Hz	CFM	338	294	253	171	1004	00 5	01 5
	2400	50H2	Sones	2.1	2.4	2	3.5	1234	23.5	21.5
	220V	604-	CFM	515	421	330	227	1110	24.2	31
	2200	60Hz	Sones	2.5	2.3	1.9	3	1113	34.3	31
25AUHT	240V	50Hz	CFM	527	465	400	347	1143	35.2	32
	2400	50H2	Sones	5.8	5.6	5.2	4.8	1143	55.2	52
	220V	604-	CFM	586	486	335	174	074	40.4	38
	2200	60Hz	Sones	2.2	2.2	4.1	2.4	874	40.4	38
30AUHT	240V	50Hz	CFM	624	565	491	312	005	41 5	00
	2400	50H2	Sones	3.7	3.6	3.6	4.1	935	41.5	39
	220V	60U-	CFM	327	294	256	162	1277	24.2	22
	2200	60Hz	Sones	2.8	2.7	4.3	5.3	1211	24.2	22
20ALHT	240V	50Hz	CFM	300	274	234	141	1000	23.5	21.5
	2400	50H2	Sones	2.6	2.5	3.8	3.8	1228	23.5	21.5
	220V	604-	CFM	465	409	350	260	1116	40	36
	2200	60Hz	Sones	3.5	3.2	3	5.4	1110	40	30
25ALHT	240V	50Hz	CFM	468	418	371	327	1150	05.0	20
	2400	5002	Sones	5.5	5.9	5	5.2	1152	35.2	32
	220V	6011-	CFM	503	374	230	119	000	10	00
	2200	60Hz	Sones	2.6	3	3.1	2.5	833	42	38
30ALFT	240V	50U-	CFM	571	494	406	247	001	44.0	40
	2400	50Hz	Sones	3.8	3.7	5.1	3.8	921	44.3	40

Performance certified is for installation type A: Free inlet, Free outlet. Performance ratings include the effects of backdraft shutter for all models and inlet grille for model 20ALH, 25ALH, 30ALF 11, 20ALHT, 25ALHT, 30ALFT. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H₂O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free inlet hemispherical sone levels. *the Watts rating is only for AMCA test method and it is at the static pressure of 0 inch of H₂O. **the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Wall Mo	ount Ve	entilati	ion Fan I	Model Con	nparis	on (N	on-AN		ertifie	ed)
		Voltage	Frequency	Comsumption	RPM	Air V	olume	Noise	Weight	Installation space
Model No.		[V]	[Hz]	[W]	[min-1]	[CMH]	[CFM]	[dB(A)]	[Kg]	[mm]
25AUFA		220	50 60	34 34	1,100 1,080	835 820	491 483	42 42	2.8	300 x 300
	Eukoust		50	20	1,290	580	341	36		
20RGF	Exhaust	000	60	25	1,440	650	383	39		050 x 050
ZUNGF	Intake	220	50	16	1,100	405	238	46	2.2	250 x 250
	ппаке		60	17	1,170	355	209	48		
	Exhaust		50	29	1,120	945	556	38		
25RGF	Exhluor	220	60	34	1,145	950	559	39	2.4	300 x 300
23661	Intake		50	20	900	640	377	45		
			60	24	995	645	380	44		
	Exhaust		50	31	900	1,165	686	39		
30RGF		220	60	33	995	1,150	677	38	2.8	350 x 350
	Intake		50 60	24 24	905 810	800 745	471 428	43 42		
			50	24 20	1,260	580	341	36		
	Exhaust		60	20	1,200	630	371	39		
20RGFT		220	50	15	1,150	405	238	46	2.2	250 x 250
	Intake		60	17	1,140	355	200	46		
	F		50	27	1,090	945	556	38		
	Exhaust		60	31	1,110	950	559	39		
25RGFT		220	50	21	1,010	600	353	45	2.4	300 x 300
	Intake		60	23	970	560	330	44		
	Exhaust		50	31	885	1,165	686	39		
ODDOET	Exhaust	000	60	38	800	1,000	589	38		350 x 350
30RGFT	Intake	220	50	24	840	700	412	43	2.8	330 X 330
	Intake		60	26	810	680	400	42		
	Exhaust		50	20	1,275	546	321	39		
20RLF	Exhaust	220	60	25	1,290	600	353	43	2.4	250 x 250
	Intake	220	50	17	1,225	385	227	46	2.4	200 x 200
			60	17	1,145	340	200	49		
	Exhaust		50	29	1,060	876	516	41		
25RLF		220	60	34	1,060	835	491	41	2.7	300 x 300
	Intake		50 60	20 24	1,020 970	570 573	335 338	45 43		
			50	31	876	990	583	43		
	Exhaust		60	33	885	990	556	44		
30RLE		220	50	24	850	730	430	43	3.1	350 x 350
	Intake		60	24	776	690	406	44		
			50	20	1,240	548	321	39		
	Exhaust		60	24	1,290	570	335	43		
20RLFT	1	220	50	15	1,190	370	218	46	2.4	250 x 250
	Intake		60	17	1,180	340	200	46		
	Exhaust		50	29	1,110	840	494	43		
	Exhaust	220	60	33	1,110	835	491	43	2.7	300 x 300
25RLFT	Intake	220	50	21	1,035	580	330	43	2.1	300 X 300
			60	23.5	1,035	560	583	44.5		
	Exhaust		50	31	890	990	583	44		
30RLET		220	60	38	880	945	558	43	3.1	350 x 350
OUTILLI	Intake		50	25	770	600	353	43		
	Intake		60	26	770	600	353	44		

Note: The value in Specification table are representative characteristic value at 220V, 50/60Hz RPM data is for reference only. Values may vary subject to different conditions.

The above Wall Mount Ventilation Fan Model are not licensed to bear the AMCA Certified Ratings Seal.

Window Mount Ventilation Fan Model Comparison

Model	Voltage	F	CFM/SONE	AT STATIC	Pressure	RPM	Watts*	Watts**		
Woder	vonage	Frequency	inches of H ₂ O	0	0.05	0.1	0.15		FOR AMCA	FOR IEC
1514/1107	220V	60Hz	CFM Sones	127 3.0	94 3.6	63 3.5	31 3.9	2440	14.6	13
15WHCT	240V	50Hz	CFM Sones	127 2.3	95 2.7	68 3.5	50 2.8	2537	16	15
0004/1107	220V	60Hz	CFM Sones	250 3	188 3.9	127 4.5	78 4.2	1517	24.4	22
20WHCT	240V	50Hz	CFM Sones	230 2.8	147 3.8	103 3.4	53 4	1333	23.4	22

Model	Voltage	Frequency	CFM/SONE	AT STATIC	Pressure (RPM	Watts*	Watts**		
Voltage			inches of H ₂ O	0	0.02	0.04	0.06		FOR AMCA	FOR IEC
	220V	60Hz	CFM	124	109	91	79	2021	10.0	10
15WAA	2200		Sones	3.6	4.5	4.1	4	2021	19.6	18
15WAAMN	240V	50Hz	CFM	124	109	93	78	2062	18.2	16
	2400		Sones	3.5	4.5	4.1	3.8			10
	0001/	60Hz	CFM	206	147	124	94	1005	10.4	17
20WAA	220V		Sones	3.7	3.8	3.5	3.3	1385	18.4	17
20WAAMN	0.4014	50U-	CFM	165	153	141	131	1375	18.6	17.5
	240V	50Hz	Sones	3.4	3.3	3.4	3.4	1375	13.0	17.5

Model	Voltage	Frequency	CFM/SONE	AT STATIC	Pressure (RPM	Watts*	Watts**			
			inches of H ₂ O	0	0.01	0.02	0.03		FOR AMCA	FOR IEC	
	220V	60Hz	CFM	105	94	79	66	1425	9.7	8.9	
	2200		Sones	0.9	0.9	2.2	2.4	1425	9.7	0.9	
15WUD	0.4014	V 50Hz	CFM	124	115	104	94	1722	10.3	0.5	
	240V	SUHZ	Sones	1.4	1.6	1.8	3.7		10.5	9.5	
			inches of H ₂ O	0	0.02	0.03	0.04				
	220V	60Hz	CFM	188	129	112	88	980	19.2	17.9	
20WUD		Sones	0.8	1.2	1.8	1.4	960	19.2	17.9		
20000	0.401/		CFM	221	168	141	118	1096	18.5	17.0	
	240V	50Hz	Sones	1.8	1.6	2.2	2.0	1096	10.5	17.2	

Performance certified is for installation type A: Free Inlet, Free Outlet. Performance ratings include the effects of shutter for all models and inlet grille for model 15WHCT and 20WHCT. The speed (RPM) and Watts rating shown are at the static pressure of 0 inch of H2O. The sound ratings shown are loudness values in fan sones at 5 ft. (1.5m) in a hemispherical free field calculated per AMCA International Standard 301. Values shown are for installation type A: Free Inlet hemispherical sone levels.

 * the Watts raing is only for AMCA test method and it is at the static pressure of 0 inch of H₂O.

** the Watts rating is only for IEC test method and the AMCA Certified Ratings Seal does not apply to IEC test method watts.

Model No.	Voltage	Frequency		Comsumption	RPM	Air Vo	olume	Noise	Weight	Installation Size
		[W]		[W]	[min ⁻¹]	[CMH]	[CFM]	[dB(A)]	[Kg]	[mm]
		50	Hi	22	1,878	205	121	46		ø186 - ø190
1514/14	220	50	Lo	19	1,325	145	85	36	0.4	
15WJA	220	60	Hi	27	2,012	220	129	48	2.4	
		00	Lo	20	1,294	153	90	38		

Note: The value in Specification table are representative characteristic value at 220V, 50/60Hz

RPM data is for reference only. Values may vary subject to different conditions. The above Window Mount Ventilation Fan Model (15WJA) is not licensed to bear the AMCA Certified Ratings Seal.

AIR CURTAIN

Cross Flow Type

- · Uniquely auxiliary air enhances airflow output
- · Thick air stream provides high inflow momentum
- · Resin with glass fiber adopted for fan blade
- Simple structure allows easy maintenance
- Permanently lubricated ball bearing equipped
- · Air deflection plate for airflow direction adjustment
- · Main air inlet at top allows neat image
- · Push button switch
- 2-speed selection

						Unit: mm
	3009UA	4009UA	3012UA	4012UA	3015UA	4015UA
Model	3009GA	4009GA	3012GA	4012GA	3015GA	4015GA
	3009DA	4009DA	3012DA	4012DA	3015DA	4015DA
A	900	900	1200	1200	1500	1500
В	50	50	200	200	350	350

PRODUCT LINEUP

Remote Controlled Series

Efficient Distance - 3m 3009GA (900mm) 3012GA (1200mm) 3015GA (1500mm)

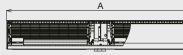
Efficient Distance - 4m 4009GA (900mm) 4012GA (1200mm) 4015GA (1500mm)

Sensor Series

3009DA (900mm) 3012DA (1200mm) 3015DA (1500mm)

Standard Series

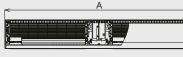
3009UA (900mm) 3012UA (1200mm) 3015UA (1500mm)


4009DA (900 mm) 4012DA (1200 mm) 4015DA (1500 mm)

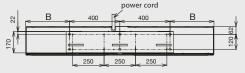
4009UA (900 mm) 4012UA (1200 mm) 4015UA (1500 mm)

DIMENSION

Front view of standard /sensor series



Right view of remote control series


212

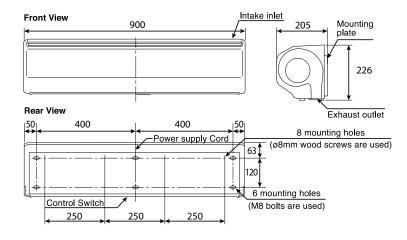
231

Front view of remote control series

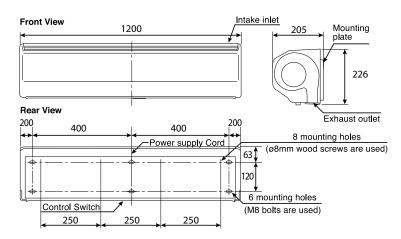
Back view of standard / sensor / remote control series

Model No.		Volt	age		Air Vo	lume		Consu	Imption	Cur	rent	Outlet	Velocity	Na	ise	Weight		
		Model No.			Н	Hi Lo		_0	[W]		[/	A]	[m	/s]	[dB	(A)]	[kg]	
			[V]	[Hz]	[m³/h]	[CFM]	[m³/h]	[CFM]	Hi	Lo	Hi	Lo	Hi	Lo	Hi	Lo		
		3009UA	220V	50	1,100	647	920	541	76	70	0.35	0.32	10.5	8.5	48.5	45		
		3009GA	2201	60	1,100	647	900	530	92	78	0.42	0.36	10.5	8.5	49.5	45	12.5	
	900mm	3009DA	240V	50	1,150	677	960	565	86	80	0.37	0.35	10.5	9	50.5	47.5		
	30011111	4009UA	220V	50	1,340	789	1,190	700	110	94	0.50	0.43	12	10	54.5	51		
		4009GA	2201	60	1,340	789	1,100	647	141	111	0.64	0.51	12	10	55.5	51	13.5	
		4009DA	240V	50	1,360	800	1,200	706	122	100	0.51	0.43	12.5	10.5	56.5	53.5		
		3012UA	220V	50	1,400	824	1,270	747	94	85	0.43	0.40	9.5	8	48.5	44.5	15	
		3012GA	2201	60	1,400	824	1,250	736	109	94	0.51	0.46	9.5	8	48.5	44.5		
	1200mm	3012DA	240V	50	1,500	883	1,320	777	107	95	0.46	0.43	10	8.5	50.5	47		
	120011111	4012UA	220V	50	1,700	1,001	1,530	901	126	105	0.59	0.49	12	10	52.5	48.5		
		4012GA	2201	60	1,700	1,001	1,450	853	153	118	0.70	0.55	12	10	52.5	48.5	16	
		4012DA	240V	50	1,800	1,059	1,580	930	139	110	0.60	0.49	12.5	10.5	54.5	51		
		3015UA	220V	50	2,000	1,177	1,800	1,059	131	110	0.59	0.50	10.5	9.5	51.5	48		
		3015GA	2201	60	2,000	1,177	1,750	1,030	150	118	0.68	0.54	10.5	9.5	51.5	48	18.5	
	1500mm	3015DA	5DA 240V 5UA 220V	50	2,100	1,236	1,850	1,089	145	115	0.60	0.50	11	10	53.5	50.5		
	100011111	4015UA		50	2,450	1,442	2,000	1,177	177	147	0.81	0.68	13	10	56	52		
		4015GA		60	2,300	1,354	1,780	1,048	220	160	1.01	0.74	13	9.5	56	52	18.5	
		4015DA		50	2,500	1,471	2,050	1,207	200	160	0.86	0.68	13.5	10.5	58	54.5		

Note: 1. The parameters as shown in above table are mearsured at ambient temperature of 20°C.


2. The noise value is measured 1.5m far from the product at angle of 45° below the air outlet. The air outlet is the maximum value.

3. Because the above-mentioned velocity is measured in test laboratory where it's empty, without air flow and obstacle, after actual installation the velocity may vary depends on different service environment.


AIR CURTAIN

Sirocco Type

DIMENSION For *ESK Models

DIMENSION For *ELK Models

Short	Long
08ESK 10ESK 12ESK 14ESK	08ELK 10ELK 12ELK 14ELK

- Sirocco fan adopted for long reach and narrow diffusion airflow
- ABS resin casing provides better weather resistance
- Permanently lubricated ball bearing equipped
- Air deflection plate for airflow direction adjustment
- · Air inlet at top allows neat image
- Push button switch
- 2-speed selection

	Length	Frequency	Input	t [Hz]			Outlet Velo	ocity [m/s]	Air Volun	ne [CMH]	Noise	[dB(A)]	Weight			
Model	[mm]	[Hz]	High	Low	High	Low	High	Low	High	Low	High	Low	[Kg]			
08ESK	SK	50	46	42	0.23	0.21	11.5	10.3	650	580	42	39	12			
UOLON		60	57	49	0.28	0.25	12.1	9.9	690	560	43	38	12			
10ESK		50	72	66	0.31	0.29	12	11.1	750	630	46	42	12			
TULSIN	900	60	88	79	0.42	0.33	14.9	10.9	860	600	50	40	12			
12ESK	500	50	176	155	0.85	0.69	16.9	15.8	1050	960	55	50	13			
IZEON		60	202	170	0.94	0.75	16.1	15.3	990	940	54	49	15			
14ESK		50	257	218	1.14	0.99	21.9	19.1	1340	1168	62	59	13			
THEOR		60	312	255	1.43	1.16	21.3	17.7	1303	1083	61	57	10			
		50	57	53	0.28	0.27	11.6	10.6	880	800	43	41				
08ELK		60	74	62	0.36	0.32	12.4	10.5	940	790	45	40	14			
					50	96	86	0.4	0.39	13.1	11	1000	830	46	42	
10ELK	1200	60	116	102	0.53	0.47	15.1	10.5	1150	790	50	41	14			
	1200	50	224	200	1.04	0.9	17	15.8	1420	1320	56	51	45			
12ELK		60	258	220	1.21	1.04	16.2	15.4	1340	1290	55	50	15			
		50	333	290	1.52	1.32	22.5	20.1	1867	1668	63	63 61	45			
14ELK		60	423	339	1.93	1.55	22	18.7	1826	1552	63	59	15			

Note: The values in specification tables are representtive characteristic value at 220V 50Hz/60Hz and the ambient temperature of 200C. The noise values were measured at an angle of 450 below the air outlet, from a distance of 1.5 meters inside the room. The outlet shows maximum value.

SUDAN

Jawharaa Project Mixed Use Development Energy Recovery Ventilators

519 Villas in ALAIN **Residential Villas** UAE Window Mount Ventilation Type

Pearl Muscat Ph1 Mixed Used Development **Ducted Ventilation Products**

Buhaleeba 200 Villa Complex UAE **Residential Villas Ducted Ventilation Products**

OMAN

Pearl Muscat Ph2-Mixed Used Development Ducted Ventilation Products

B+G+3 Ajman Commercial Window mount Ventilation

AL Waseel Housing Project Local Housing Development for Locals DC motor Ducted Ventilation products

42 Villas in Doha Residential Villas Window Mount Ventilation

UAE

Labour Camp Project Labor Camps Complex Ceiling fans, Window Mount fans, industrial fans

OMAN Ce

125 Apartments Residential Development Ceiling Mount Ventilation Fans

OMAN 252 Apartments Short Description Cabinet Fans , Wall Mount Louver

QATAR

432 Apartments Short Description Cabinet Fans, Wall Mount Louver

QATAR

234 Apartments Residential Development Ceiling Mount Ventilation Fans

220 Villa in Abu Dhabi Residential Development Window & Wall Mount Ventilation Fans

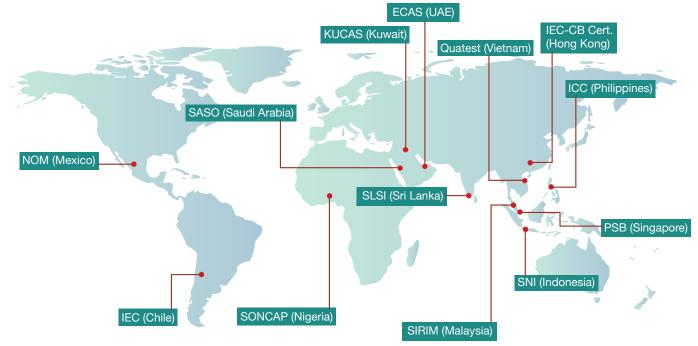
SABIC

Net Zero Energy Green House Model Cabinet Fans, Wall Mount Louver, Energy Recovery Ventilators

OMAN

G+2 Warehouse & Offices Commercial/industrial Mini Scirocco & Industrial Range Fans

CERTIFICATES


To ensure safety, KDK products are designed and manufactured according to either the standards of JIS (Japan Industrial Standard) or IEC (International Electrotechnical Commission). Test certificates are awarded by recognized test laboratories that further prove the reliability of our products.

CB Test Certificate

CB Test Certificate is issued to products in compliance with the applicable requirement of IEC standard under CB Scheme (Certification Bodies' Scheme) set by IEC.

Beside the international standard of JIS and IEC, different safety certifications are also acquired to fulfill the requirement in different countries.

In addition, the performance of KDK products are qualified by external authorities:

- 1) AMCA Seal (Air Movement and Control Association International Inc.) of The United States for ventilation products
- 2) Suruhanjaya Tenaga (Energy Commission) of Malaysia for ceiling mount ventilation fans
- 3) VNEEP (National Energy Efficiency Programme) of Vietnam for electric fans
- 4) EEL (Energy Efficiency Label) of Hong Kong for dehumidifier
- 5) Seal of Approval Certificate of Allergy UK (The British Allergy Foundation) for air purifier and air cooler
- 6) Gulf Technical Regulation (GCC) for the Gulf markets

(2) Suruhanjaya Tenaga Malaysia

AND ADDRESSON

(3) VNEEP

Vietnam

(4) EEL, Hong Kong

5) Allergy UK , United Kingdom

6) Gulf Technical Regulation (GCC)

INUILS

KDK Company, Division of PES 4017, Takaki-cho, Kasugai, Aichi, Japan https://www.kdk-mea.com/

Actual colors may vary slighty from those shown.
 Specifications are subject to change without prior notice.

CATALOG NO: K-PQDV01 June 2020