
BULLETIN 171 JUNE, 1997

TUBULAR ACOUSTAFOIL® FANS

- Space-efficient, in-line flow design
- Static pressures to 14"WG
- Capacities to 140,000 CFM
- Quiet, efficient airfoil wheel

7660 QUINCY STREET-WILLOWBROOK, ILLINOIS 60521-5596 TEL: [630] 794-5700 • FAX: [630] 794-5776 • WEB: http://www.nyb.com • E-MAIL: nyb@nyb.com

TUBULAR ACOUSTAFOIL® FANS

The New York Blower Company's Tubular AcoustaFoil Fans combine the efficient performance of its airfoil wheels with the versatility and compactness of axial flow fan design. This combination is suited to industrial supply and exhaust systems as well as heating, ventilating, and air-conditioning applications. A wide range of accessories is available to tailor Tubular AcoustaFoil Fans to each unique application.

CONSTRUCTION FEATURES

- AcoustaFoil wheel airfoil blades provide highly efficient, quiet operation for clean-air applications. Sizes 12 and 15 available in welded aluminum construction only; Sizes 18 through 73 are welded steel.
- Heavy-gauge welded components provide structural strength, durability, and minimal leakage.
- Adjustable motor mount—features positive screw adjustment for ease in adjusting belt tension.
- Bearings are selected to provide long service life...50,000 hours average minimum L-10 on Class
 I, 750,000 hours average minimum on Classes II and III. External lubrication fittings are standard.
- Standard finish is a medium-green enamel.
- Shafting is straightened to close tolerance to minimize "run out" and ensure smooth operation.
- Lifting eyes are standard.
- All Tubular AcoustaFoil wheels are dynamically balanced. Fans with motors and drives mounted by nyb are checked at the specified running speed.
- Inner-tube construction—isolates bearings and drive from airstream. Removable end cover allows access to bearings and drive.

DESIGN FEATURES

- Complete AMCA Class I, II, III performance.
- Capacities to 140,000 CFM.
- Pressures to 14"WG.
- Efficiencies beyond 75%.
- Sixteen sizes: 12" through 73" wheel diameters.
- Choice of direct-drive or belt-drive arrangements in a variety of mounting positions [see page 6].
- Unique inlet cone with dual-airflow diverters improve fan efficiency.
- Precisely formed and positioned vanes convert angular airflow to axial flow in the housing, minimizing turbulence while maximizing efficiency.

Arrangement 9-M with optional internal inlet-vane damper, motor, and drive

AMCA CERTIFIED RATINGS AIR PERFORMANCE AIR MOVEMENT ADSOCIATION UNC.

AMCA


SEAL

The New York Blower Company certifies that the Arrangement 9 Tubular AcoustaFoil Fans shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and comply with the requirements of the AMCA Certified Ratings Program.

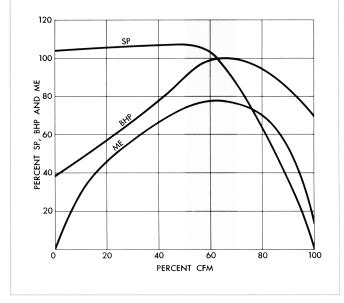
Copyright © 1991 by The New York Blower Company.

® AcoustaFoil is a registered trademark of The New York Blower Company.

WITH ACOUSTAFOIL® WHEELS

Airfoil-blade design is the most efficient and quiet selection for clean-air environments due to aerodynamic superiority.

Stable performance—completely stable pressure curve from wide-open to closed-off...ideal for variable air volume systems.

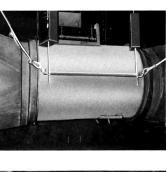

Non-overloading horsepower curve—horsepower reaches a peak and then decreases as flow increases... allows calculation of the maximum brake horsepower at a given fan speed so a motor can be selected that will not overload if system pressure changes.

Efficiency—the mechanical efficiency curve offers a broad selection range with little horsepower variation.

Sound—the superior efficiency of the AcoustaFoil wheel provides a low sound level over a wide performance range.

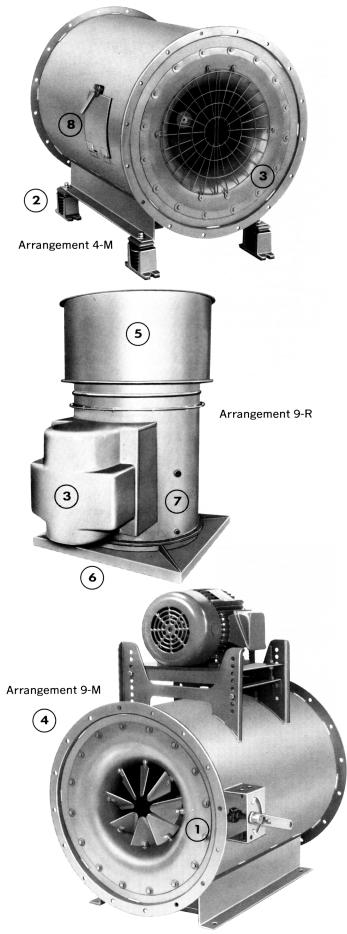
TYPICAL ACOUSTAFOIL PERFORMANCE

Tinted area provides quietest, most efficient performance.


APPLICATION ADVANTAGES

New York Blower's Tubular AcoustaFoil Fan combines the system simplicity and installed cost savings of axial-flow designs with the superior performance of airfoil centrifugal fans.

In applications where equipment space is at a premium, the compact Tubular AcoustaFoil Fan can reduce system space requirements by as much as 50% over conventional centrifugal fans. The straight, in-line design eliminates the need for space consuming and costly transitions, elbows, and inlet boxes. In addition, because of its superior design, the Tubular AcoustaFoil Fan is lighter than comparable centrifugal systems further reducing structural requirements and system costs.


Sound is becoming increasingly important in the industrial and the commercial environments. Because the Tubular AcoustaFoil Fan is based on centrifugal fan principles and utilizes the highly efficient AcoustaFoil airfoil wheel, it is ideally suited to applications where sound is a concern. The Tubular AcoustaFoil Fan is significantly quieter than other axial fan alternatives. Sound levels are further reduced because of generally larger fan outlets and lower outlet velocities as compared to standard centrifugal fans.

Accessories and Modifications

1. INTERNAL INLET-VANE DAMPER

Compact damper/cone assembly provides smooth control in systems that require efficient dampering of airflow...electric and pneumatic damper operators also available. Available on Sizes 18 and larger.

2. VIBRATION ISOLATION

Rubber-in-shear or spring-type isolation mounts are available to prevent the transmission of vibration to the mounting structure.

3. SAFETY EQUIPMENT/WEATHER COVER

Belt guards, inlet guards, and weather covers are available. Selection of appropriate safety accessories is the responsibility of the system designer familiar with the specific installation.

4. FLANGES

Rolled rings welded flush with fan inlet and outlet provided with holes...companion flanges with matching hole pattern also available.

5. STACK HOOD

Stack hood with built-in back draft dampers available for outdoor exhaust applications.

6. CURB CAP

Gussetted cover with nailer holes on perimeter includes flange for fan mounting.

7. DRAINS

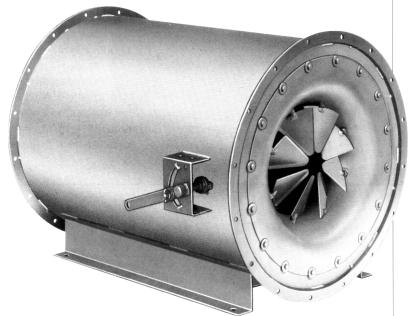
3-way for horizontal fans, **2-way** for vertical Up Blast units... provides positive drainage of inner-tube and housing.

8. ACCESS DOOR

Gasketed, latch-type door swings open on hinges after turning cam levers. Provides easy access to wheel. Available in Sizes 18 and larger. Inspection hand hole with cover plate available on smaller sizes.

9. SHAFT SEAL [not shown]

Ceramic-felt seal elements encased between metal backing plate and retaining disc...elements can be easily split for field installation and maintenance. Lubricated lip seals are also available.


Protective coatings and special alloys are available to combat corrosion problems.

Thin film coatings [5 to 10 mil thickness]—special paints and spray coatings are available under a variety of trade names. **nyb** works with experienced coating applicators who can apply coatings to meet a wide range of requirements.

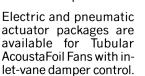
Alternate material construction—Tubular Acousta-Foil Fans can be constructed of aluminum or stainless steel.

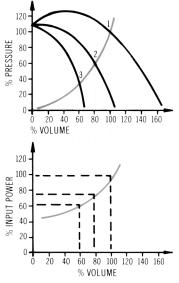
PLR wheel—single-thickness blades handle airstreams not suited to the AcoustaFoil wheel's hollow airfoil shape.

VARIABLE AIRFLOW APPLICATIONS

Arrangement 4-M with optional internal inlet-vane damper

The rising cost of energy, the demand for more flexible systems, and new control technology have put greater emphasis on air-handling systems that can be operated efficiently at less than maximum design airflow. New York Blower's unique Tubular AcoustaFoil Fan with its stable AcoustaFoil wheel is particularly well-suited to variable airflow systems found in industrial process and commercial air-conditioning systems. The AcoustaFoil wheel design provides not only maximum operating efficiency at design CFM but also at reduced airflow, regardless of the control method applied. This higher efficiency also provides quieter operation throughout the system's entire range of operation.

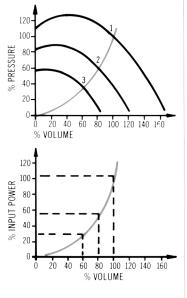

The decision to vary the fan CFM by inlet-vane damper or speed control should include the consideration of the fan's duty cycle. Extended operation at less than full performance favors speed control because of its superior energy savings potential despite its higher first cost. Infrequent operation at less than full performance favors inlet-vane damper control because of its lower first cost relative to its savings potential.


The New York Blower Company's nationwide network of trained sales engineers is familiar with these control alternatives and can assist in selecting the best control for a particular application. For single source responsibility, packages are available with pneumatic or electric actuators for inlet-vane damper control or variable frequency motor controllers for speed control.

INLET-VANE DAMPER CONTROL

New York Blower's internal inlet-vane damper is an integral part of the fan inlet cone assembly. The design does not compromise the Tubular AcoustaFoil Fan's compact design nor its simple, "in-line" installation.

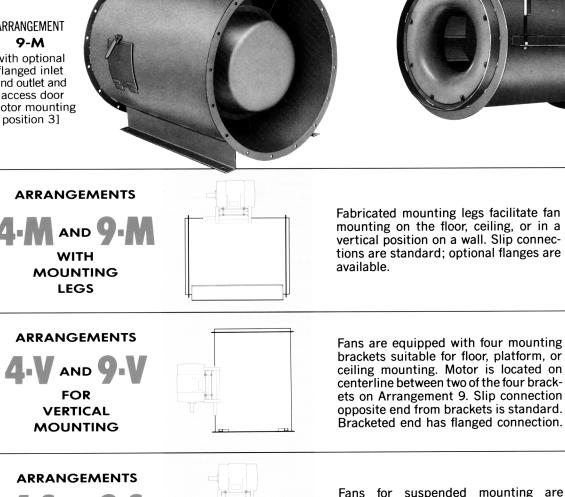
Tubular AcoustaFoil inlet-vane dampers reduce airflow by spinning the air in the direction of wheel rotation as it enters the fan and by decreasing the fan's inlet area. The wheel cannot develop its full output, yielding reduced CFM at reduced horsepower. Each damper setting creates new pressure and horsepower curves. With inlet-vane dampers, reduced airflow always results in reduced horsepower.



VARIABLE FREQUENCY MOTOR SPEED CONTROL

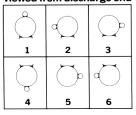
The Tubular AcoustaFoil Fan, especially the directdrive arrangement, is ideal for variable frequency motor control. Variable frequency control eliminates damper mechanisms and allows installation of the control device away from the process environment.

Variable frequency motor speed control provides energy savings by directly controlling fan speed. From the fan laws, CFM varies directly with the change in fan speed and horsepower varies by the change in fan speed cubed. For example, a 20% reduction in fan speed yields a 20% reduction in airflow and a 49% reduction in BHP. Though highest in first cost, variable frequency speed control provides the greatest potential for energy savings and flexible system control.



MOUNTING ARRANGEMENTS

ARRANGEMENT 9-S with optional motor, drive, and spring isolation


ARRANGEMENT

with optional flanged inlet and outlet and access door [motor mounting position 3]

Fabricated mounting legs facilitate fan mounting on the floor, ceiling, or in a vertical position on a wall. Slip connections are standard; optional flanges are

9-M Mounting Positions viewed from discharge end

Mounting Positions

HIV HIV 7	8 FLOW
6	MOT - 10

Fans for suspended mounting are equipped with side angle supports suitable for attachment to rods hung from the ceiling structure. Slip duct connections are standard; optional flanges are available.

9-S Mounting Positions

	-Q-
11	12

Units feature drilled flanges on inlet and discharge for mounting to the duct work.

ARRANGEMENTS AND 🌗 FOR ROOF MOUNTING

SAND 9-S

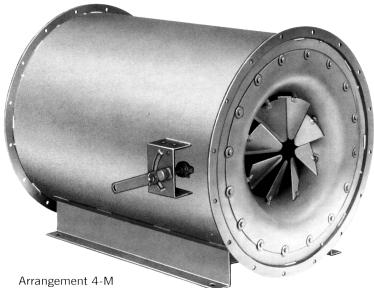
FOR

SUSPENDED

MOUNTING

ARRANGEMENTS

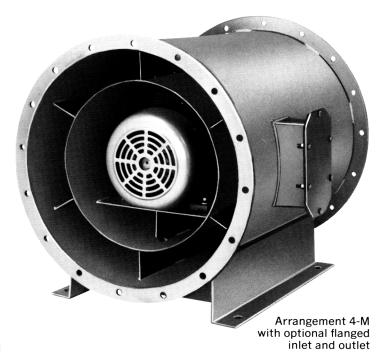
FOR


DUCT MOUNTING

AND 🎐

Tubular AcoustaFoil Fans are available packaged with stack hoods and curb caps for outdoor applications. Arrangement 9 units also feature weather covers. Roof-mounted units have round collars extending below the curb caps for easy connection to the duct system.

DIRECT-CONNECTED TUBULAR ACOUSTAFOIL FANS


The Direct-Connected Tubular AcoustaFoil Fan is ideally suited for clean-air applications at temperatures to 105°F. Available in Sizes 12 through 36, it is the most compact tubular arrangement, reducing fan length by as much as 15% over belt-drive configurations. Elimination of external motor mounting structure permits installation in extremely tight locations and reduction in overall unit weight. The Arrangement 4 configuration virtually eliminates all regularly scheduled maintenance.

Arrangement 4-M with optional internal inlet-vane damper

SAFETY EQUIPMENT

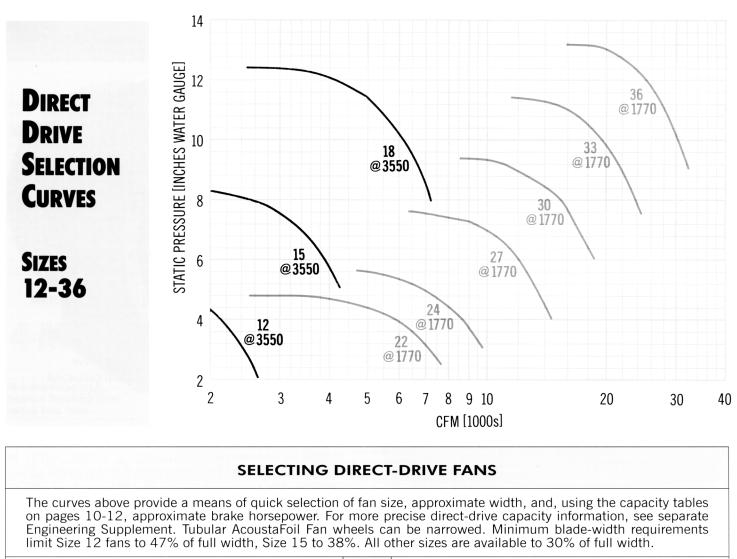
Safe operation of air-moving equipment is dependent on proper installation and maintenance. This includes selection and use of appropriate safety accessories for the specific installation. Such safety accessories are available from nyb. However, selection of the appropriate devices is the responsibility of the system designer who must be aware of the fan location, fan accessibility in the particular installation, and adjacent equipment. Neither nyb nor its sales representatives are in a position to make such a determination. The system designer must consider providing guards for all exposed moving parts as well as protection from access to high velocity airstreams. Improper application, installation, maintenance, or safety guard selection can create danger to life and limb of personnel. Users and/or installers should read "Recommended Safety Practices for Air Moving Devices" as published by the Air Movement and Control Association, 30 West University Drive, Arlington Heights, Illinois 60004, which is included with the packing slips for all shipments from nyb and is available on request.

Direct-Connected Tubular AcoustaFoil Fan performance is maximized by modifying wheel width to match specific performance requirements. By tailoring wheel width, the direct-connected Tubular AcoustaFoil Fan is selected and designed at its most efficient full load point of operation. The advent of economical, more capable variable frequency speed controls means direct-connected fan performance can now be easily modified when system requirements change or when used in variable airflow ventilation or process applications.

VANEAXIAL FANS

Cast-aluminum wheels with airfoil blades for quiet operation at most operating points...available in horizontal, vertical, and roof-mounted.

DIRECT DRIVE Capacities to 100,000 CFM 4" static pressure


Available in multiple-blade angles to provide maximum airflow at specific motor horsepower and speed ratings.

BELT DRIVE Capacities to 92,000 CFM 5" static pressure

Allows flexibility of selection at wide variety of system requirements.

Fan performance with narrow-width Tubular Acousta- Foil wheels can be determined as follows. If conditions are at other than 70°F., sea level, or standard density [0.075 pounds per cubic foot], correction factors must be applied to SP and BHP. See Chart III on page 9.	STEPS	EXAMPLE: Select a duct-mounted Tubular AcoustaFoil Fan for 20,000 CFM at 8"WG at 70°F. and sea level.
Plot the desired CFM and SP on the direct-drive chart above and draw a horizontal line through the plotted point to the fan curve to the right.	1	The Size 33 at 1770 RPM is the most economical.
Draw a vertical line from where the horizontal line intersects the fan curve and read the CFM.	2	Approximately 24,000 CFM.
The approximate blade-width percentage is the desired CFM divided by the full-width CFM from Step 2.	(J.)	% width = 20,000 CFM \div 24,000 CFM = 83%.
Turn to the appropriate capacity table, pages 10-12, and determine the BHP required by a full-width fan at the full-width CFM and desired SP.	<u>A</u>	From page 11, a Size 33 Fan would require approx- imately 49.3 BHP for 24,000 CFM at 8"WG.
The narrow-width fan will require the BHP from Step 4 times the percent width from Step 3.	F	83% of 49.3 BHP is 40.9 BHP.
The complete fan description includes fan size, class, arrangement, percent width, motor speed, CFM, SP, and BHP.	ß	The fan is a Size 33 Class III Arrangement 4-D, 83% width, at 1770 RPM for 20,000 CFM at 8"WG at approximately 40.9 BHP.

For a given fan size, CFM, and static pressure, capacity tables can be used to obtain outlet velocity, fan RPM, and BHP. If capacities are at conditions other than 70°F., sea level, or standard density [.075 lb./cu. ft.], correction factors must be applied to static pressure and BHP.

PROCEDURES	STEPS	EXAMPLE: A fan is required for 14,000 CFM at 3"WG at 100°F. and 6000' elevation.
If conditions other than standard are involved, correct static pressure for actual altitude and temperature using Chart III.	1	Chart III gives a 1.33 factor for 100° F. and 6000° . Corrected SP is 3"WG x 1.33 = 4"WG at 70°F. Select fan from capacity tables for 14,000 CFM at 4"WG.
Select size, RPM, and BHP of fan from capacity table.	2	A Size 27 fan is selected for 14,000 CFM at 4"WG at 1763 RPM and 16.1 BHP.
Check maximum safe speed of fan at operating tem- peratures as shown in Charts I and II.	(J.)	From Charts I and II, the maximum safe speed of a Size 27 fan, Class II construction, at 100° F. is 2019 RPM [2060 x .98]. Fan is satisfactory for operation at 100° F.
Determine actual performance at operating conditions by correcting SP and BHP.	<u>R</u>	Actual performance: 14,000 CFM at 3"WG [4" \div 1.33] at 1763 RPM at 12.1 BHP [16.1 \div 1.33] at 100°F. and 6000'.

In capacity tables, pages 10-13, Class I is to left of outline area, Class II is outline area, Class III is to right of outline area.

MAXIMUM	CHART I	Size	Class I	Class II	Class III	Сн	ART	
SAFE SPEED INFORMATION	MAXIMUM SAFE SPEEDS† TUBULAR	12* 15* 18 22 24	3840 3140 2320 2090 1730	5010 4100 3025 2725 2260	NA NA 3800 3185 2830	TEMP	PERAT	TURE
Chart I details maximum safe speed of standard wheels at 70°F. When alloy con- struction is specified or when temperatures are involved, multiply the appropriate safe operating speed shown in Chart I by	ACOUSTAFOIL FANS AT 70°F. †Maximum safe speeds apply only to wheels operated at or below stated temperature and	27 30 33 36 40	1580 1425 1293 1140 1027	2060 1855 1685 1490 1343	2595 2335 2120 1870 1685	FOF	CTOF R WHI E SPE	EEL
the factor shown in Chart II. Maximum operating temperature for standard Ar-	free of material build-up, cor- rosion, or wear.	44	935	1222	1534	T 05	Whee	el material
rangement 4 fans is 105°F. and for stan-	*Sizes 12 and 15 AcoustaFoil	49	849	1110	1393	Temp. °F.	Steel	Aluminum
dard Arrangement 9 fans is 120°F. For temperatures above 120°F. as indicated by tinted areas in Charts II and III, con- sult nyb.	wheels are aluminum. NA—Not Available.	54 60 66 73	753 694 630 570	985 906 824 745	1235 1138 1034 935	-50 70 120 200	1.00 1.00 .98 .97	1.00 1.00 .98 .98

CHART III CORRECTION FACTORS FOR TEMPERATURE AND ALTITUDE

Temperature					AI	titude-1	feet abov	ve sea lev	vel				
°F.	0	500	1000	1500	2000	3000	4000	5000	6000	7000	8000	9000	10000
-50	.77	.79	.80	.82	.83	.86	.89	.92	.96	1.00	1.04	1.08	1.12
-25	.82	.84	.85	.87	.89	.92	.95	.98	1.03	1.07	1.11	1.15	1.19
0	.87	.89	.91	.92	.94	.97	1.01	1.04	1.09	1.13	1.18	1.22	1.26
20	.91	.93	.95	.97	.98	1.02	1.06	1.09	1.14	1.18	1.23	1.27	1.32
40	.94	.96	.98	1.00	1.02	1.05	1.09	1.13	1.18	1.22	1.27	1.32	1.36
60	.98	1.00	1.02	1.04	1.06	1.10	1.14	1.18	1.23	1.27	1.32	1.37	1.42
70	1.00	1.02	1.04	1.06	1.08	1.12	1.16	1.20	1.25	1.30	1.35	1.40	1.45
80	1.02	1.04	1.06	1.08	1.10	1.14	1.18	1.22	1.28	1.33	1.38	1.43	1.48
100	1.06	1.08	1.10	1.12	1.15	1.19	1.23	1.27	1.33	1.38	1.43	1.48	1.54
120	1.09	1.11	1.13	1.16	1.18	1.22	1.26	1.31	1.36	1.42	1.47	1.53	1.58
140	1.13	1.15	1.18	1.20	1.22	1.27	1.31	1.36	1.41	1.47	1.53	1.58	1.64
160	1.17	1.19	1.22	1.24	1.26	1.31	1.36	1.40	1.46	1.52	1.58	1.64	1.70
180	1.21	1.23	1.26	1.28	1.31	1.36	1.40	1.45	1.51	1.57	1.63	1.69	1.75
200	1.25	1.28	1.30	1.33	1.35	1.40	1.45	1.50	1.56	1.63	1.69	1.75	1.81

S	TA		19						diamet nferend		·			rea: 1.5 HP = .0		t. <u>PM</u>) ³ 000)		Class Class	I = 38 II = 50	840 RPN 910 RPN	
CFM	ov	1"5	6P	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	7"	SP	8"	SP	9'	SP	10	'SP
CFM	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP												
900 1200 1500	588 784 980	1665 1937 2224	0.60 0.72 0.88	2231 2333 2586	0.66 0.99 1.19	2693 2746 2878	1.14 1.30 1.53	3078 3137 3207	1.43 1.66 1.89	3430 3478 3543	1.74 2.00 2.29	3768 3797 3848	2.08 2.37 2.74	4057 4078 4126	2.40 2.77 3.22	4336 4345 4397	2.79 3.22 3.71	4598 4608 4639	3.20 3.69 4.19	4824 4855 4874	3.58 4.17 4.69
1800 2000 2200	1176 1307 1438	2533 2751 2972	1.09 1.26 1.46	2832 3023 3222	1.44 1.64 1.86	3110 3287 3463	1.81 2.05 2.29	3370 3530 3700	2.20 2.46 2.78	3632 3756 3909	2.62 2.93 3.28	3912 3998 4130	3.12 3.45 3.83	4189 4239 4331	3.85 3.97 4.35	4462 4492 4552	4.24 4.54 4.92	4693 4756 4798	4.78 5.18 5.57	4933 4980	5.35 5.78
2400 2600 2800 3000	1569 1699 1830 1961	3196 3420 3647 3876	1.69 1.98 2.26 2.52	3431 3644 3860 4079	2.12 2.41 2.78 3.19	3653 3851 4058 4267	2.59 2.95 3.38 3.81	3875 4055 4247 4448	3.13 3.52 3.96 4.45	4080 4255 4437 4619	3.67 4.10 4.57 5.07	4283 4447 4623 4803	4.25 4.70 5.21 5.78	4479 4632 4798 4972	4.84 5.32 5.85 6.43	4664 4512 4961	5.40 5.95 6.48	4865 4993	6.01 6.59		

S	TA		ŀ	3			Wheel	Wheel circun	l diame nferenc					rea: 2.2 HP = .		t. <u>PM</u>) ³ 000)				.40 RPN .00 RPN	
CFM	ov	1"5	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	7"	SP	8"	SP	9"	SP	10'	'SP
CFIVI	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
1900 2200 2500	829 960 1091	1912 2115 2322	1.11 1.33 1.60	2188 2383 2579	1.57 1.86 2.20	2411 2597 2791	2.05 2.39 2.83	2623 2784 2975	2.56 2.99 3.53	2851 2970 3137	3.21 3.66 4.21	3123 3159 3297	4.00 4.37 4.94	3372 3365 3465	4.77 5.15 5.74	3611 3599 3634	5.60 6.05 6.56	3829 3821 3820	6.44 6.95 7.46	4026 4045 4026	7.29 7.94 8.48
2800 3100 3400	1222 1353 1483	2531 2745 2960	1.90 2.27 2.73	2779 2984 3187	2.60 3.11 3.66	2989 3183 3384	3.36 3.93 4.60	3165 3362 3560	4.10 4.77 5.51	3325 3520 3716	4.87 5.60 6.41	3475 3668 3856	5.65 6.46 7.30	3624 3801 3994	6.48 7.30 8.26	3762 3929	7.29 8.16	3911 4067	8.18 9.12	4054	9.05
3700 4000 4300 4600	1614 1745 1876 2007	3178 3397 3617 3840	3.29 3.95 4.69 5.53	3397 3610 3822 4037	4.31 5.04 5.84 6.75	3587 3793 4000	5.33 6.14 7.03	3755 3957	6.31 7.22	3913	7.31	4057	8.30								

5	TA			3				Wheel of circun						rea: 3.3 HP = .4		t. <u>PM</u>) ³ 000)		Class I	I = 30	20 RPN 25 RPN 300 RPN	Ń
CFM	ov	1"\$	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	7":	SP	8"	SP	10	"SP	12'	'SP
Crm	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
2000 2800 3600	590 826 1062	1136 1346 1586	0.82 1.09 1.48	1478 1601 1801	1.32 1.66 2.17	1799 1830 1999	1.87 2.30 2.93	2056 2087 2183	2.48 3.09 3.81	2296 2347 2360	3.24 3.99 4.76	2525 2543 2560	4.06 4.85 5.82	2741 2727 2771	4.95 5.78 6.87	2937 2914 2968	5.86 6.81 8.00	3271 3254 3292	7.71 8.92 10.3	3583 3582 3574	9.76 11.2 12.7
4400 5200 6000	1298 1534 1770	1835 2098 2369	1.99 2.69 3.68	2034 2275 2525	2.84 3.76 4.90	2203 2436 2675	3.81 4.86 6.14	2367 2574 2813	4.79 5.97 7.42	2524 2714 2932	5.81 7.12 8.68	2672 2853 3051	6.89 8.30 9.98	2817 2983 3180	8.04 9.49 11.4	2963 3111 3297	9.22 10.8 12.7	3316 3356 3516	11.9 13.5 15.5	3633 3607 3735	14.5 16.3 18.5
6800 7600 8400 9200	2006 2242 2478 2714	2643 2920 3200 3483	4.94 6.49 8.36 10.6	2784 3051 3321 3594	6.28 7.94 9.94 12.3	2917 3171 3434 3700	7.65 9.46 11.6 14.1	3049 3294 3541	9.06 11.1 13.3	3171 3411 3651	10.5 12.6 15.0	3280 3517 3755	12.0 14.2 16.7	3385 3616	13.4 15.8	3492 3710	14.9 17.4	3708	18.0		

5	TA		27	2				Wheel of circum						rea: 5.0 HP = 1		t. <u>PM</u>)³ 000)			I = 27	90 RPN 25 RPN 85 RPN	Ń
CFM	ov	1"5	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10	"SP	12	"SP	14'	'SP
	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP												
4000 5000 6000	789 986 1183	1031 1180 1335	1.29 1.67 2.15	1242 1368 1508	2.07 2.60 3.31	1464 1534 1660	3.02 3.71 4.58	1684 1699 1795	4.11 4.89 5.86	1873 1886 1928	5.28 6.19 7.25	2034 2059 2082	6.43 7.53 8.79	2342 2359 2383	9.03 10.4 11.9	2614 2624 2652	11.9 13.4 15.2	2864 2870 2895	15.1 16.6 18.8	3091 3098 3118	18.4 20.1 22.4
7000 8000 9000	1381 1578 1775	1499 1668 1843	2.82 3.71 4.81	1656 1810 1971	4.16 5.19 6.44	1798 1944 2096	5.62 6.80 8.20	1923 2062 2209	7.05 8.43 9.98	2044 2173 2316	8.55 10.1 11.9	2158 2281 2416	10.1 11.8 13.7	2405 2486 2604	13.5 15.4 17.5	2667 2696 2785	17.1 19.2 21.6	2913 2929 2973	20.9 23.3 25.9	3141 3157 3171	24.9 27.5 30.3
10000 11000 12000 13000	1972 2170 2367 2564	2022 2202 2383 2566	6.13 7.69 9.50 11.6	2136 2306 2479 2655	7.92 9.67 11.7 14.0	2249 2411 2576 2744	9.76 11.7 13.9 16.4	2360 2513 2670 2831	11.8 13.8 16.1 18.7	2461 2612 2763 2919	13.8 16.0 18.4 21.1	2557 2701 2854 3003	15.9 18.1 20.8 23.6	2737 2869 3017 3165	20.0 22.6 25.6 28.8	2902 3032 3167	24.2 27.2 30.5	3063	28.6		

S	TA		24					Wheel of circur						rea: 6.1 HP = 1		it. 2 <u>PM</u>) ³ 000)			I = 22	730 RPN 260 RPN 330 RPN	Ν
CFM	ov	1"5	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10'	'SP	12	"SP	13	"SP
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP										
5000 6200 7400	810 1005 1199	953 1088 1228	1.52 1.99 2.59	1141 1257 1383	2.48 3.20 4.06	1330 1402 1517	3.68 4.52 5.58	1530 1548 1642	5.03 5.98 7.18	1698 1718 1764	6.41 7.61 8.93	1857 1874 1891	7.94 9.25 10.7	2132 2145 2164	11.1 12.7 14.5	2375 2385 2408	14.5 16.3 18.5	2598 2606 2629	18.3 20.3 22.8	2698 2711 2727	20.2 22.4 24.9
8600 9800 11000	1394 1588 1783	1376 1528 1686	3.47 4.55 5.88	1518 1658 1800	5.10 6.36 7.84	1644 1777 1913	6.85 8.31 9.97	1760 1884 2015	8.66 10.3 12.2	1868 1984 2112	10.5 12.3 14.5	1970 2080 2201	12.4 14.4 16.7	2186 2266 2373	16.5 18.8 21.3	2419 2455 2532	20.8 23.5 26.2	2645 2664 2694	25.4 28.4 31.2	2755 2758 2790	27.9 30.7 34.1
12200 13400 14600 15800	1977 2172 2366 2561	1846 2008 2171 2336	7.46 9.33 11.5 14.1	1950 2103 2258 2417	9.67 11.8 14.2 17.0	2053 2197 2345 2496	11.9 14.2 16.8 19.8	2151 2289 2430 2575	14.3 16.7 19.4 22.6	2242 2379 2515 2656	16.7 19.4 22.3 25.6	2329 2464 2595 2734	19.3 22.2 25.1 28.7	2490 2616 2746	24.2 27.6 31.1	2641 2760	29.3 33.1	2792	35.0		

S	TA	13	27	7			Wheel			eter: 27 ce: 7.0		Fan o Maxin	utlet a num Bl	rea: 7.5 HP = 3	57 sq. f 3.34 (<u>R</u>	t. <u>PM</u>) ³ 000)			= 20	580 RPN 160 RPN 195 RPN	1
CFM	ov	1"5	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10	'SP	12	"SP	14'	'SP
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP												
6000 7600 9200	793 1004 1215	805 930 1062	1.75 2.40 3.35	9.70 1077 1191	2.90 3.93 5.12	1146 1206 1312	4.34 5.53 7.05	1341 1329 1420	6.22 7.15 8.96	1487 1485 1521	7.95 9.19 11.0	1622 1644 1628	9.79 11.6 13.0	1856 1881 1889	13.7 16.0 18.2	2065 2094 2112	17.9 20.7 23.6	2257 2276 2306	22.3 25.5 29.1	2452 2453 2470	27.2 30.8 34.4
10800 12400 14000	1427 1638 1849	1198 1341 1487	4.53 6.04 7.91	1320 1451 1585	6.69 8.56 10.7	1423 1548 1678	8.77 10.9 13.5	1527 1640 1763	11.0 13.4 16.1	1622 1729 1843	13.3 16.0 18.9	1709 1812 1919	15.6 18.5 21.7	1887 1969 2073	20.3 23.8 27.6	2099 2120 2210	25.9 29.1 33.6	2316 2298 2344	32.5 35.1 39.6	2497 2492 2481	38.8 42.2 45.5
15600 17200 18800 20400	2061 2272 2483 2695	1636 1788 1940 2094	10.3 13.1 16.5 20.5	1724 1865 2012 2159	13.3 16.2 19.7 23.8	1812 1946 2084 2226	16.5 19.7 23.4 27.7	1891 2023 2158 2294	19.4 23.2 27.3 31.9	1968 2094 2227 2359	22.4 26.4 31.0 36.0	2039 2164 2293 2425	25.5 29.7 34.6 40.1	2179 2293 2416 2542	31.8 36.6 41.8 47.8	2315 2420 2534	38.4 43.6 49.5	2436 2545	44.9 50.9	2552	51.4

S	TA		3(Wheel	Whee circun	l diame nferen			Fan o Maxin	utlet a num Bl	rea: 9.2 HP = 5	22 sq. f 5.62 $\left(\frac{R}{1}\right)$	t. <u>PM</u>) ³ 000)			= 18	25 RPN 55 RPN 35 RPN	Λ
CFM	ov	1":	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10	"SP	12	"SP	14'	'SP
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP												
7000 9100 11200	759 987 1215	704 820 946	1.94 2.77 4.01	858 955 1063	3.35 4.61 6.15	1041 1070 1172	5.22 6.50 8.46	1203 1195 1271	7.32 8.57 10.8	1333 1342 1360	9.34 11.2 13.2	1456 1478 1464	11.6 14.0 15.7	1665 1688 1701	16.2 19.1 22.2	1855 1880 1903	21.2 24.9 28.8	2033 2046 2066	26.5 30.8 35.1	2216 2200 2228	32.4 36.9 42.2
13300 15400 17500	1443 1670 1898	1077 1212 1353	5.53 7.48 9.99	1186 1310 1440	8.18 10.6 13.5	1278 1399 1524	10.7 13.5 16.9	1371 1481 1599	13.5 16.6 20.2	1459 1560 1670	16.3 19.8 23.7	1535 1636 1740	19.0 22.9 27.2	1693 1772 1875	24.7 29.2 34.4	1888 1907 1997	31.7 35.8 41.7	2089 2063 2114	40.1 43.1 49.2	2248 2247 2241	47.6 52.3 56.9
19600 21700 23800 25900	2126 2354 2581 2809	1496 1641 1788 1935	13.1 17.0 21.6 27.1	1573 1710 1849 1991	16.8 20.8 25.6 31.3	1650 1780 1913 2049	20.8 25.2 30.2 36.1	1722 1848 1978 2109	24.6 29.5 35.2 41.4	1789 1913 2040 2168	28.3 33.7 39.9 46.7	1855 1975 2096 2225	32.2 37.9 44.3 51.9	1978 2088 2208 2328	40.1 46.3 53.6 61.5	2100 2201 2311	48.3 55.2 63.0	2206 2308	56.2 64.0	2313	64.7

S	TA		33	3			Wheel	Whee circun		eter: 33 ce: 8.64				rea: 11 HP = {		it. <u>PM</u>) ³ 000)			= 16	93 RPN 85 RPN 20 RPN	Λ
CFM	ov	1"\$	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10	"SP	12	"SP	14"	'SP
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP										
9000 11500 14000	804 1027 1250	659 767 881	2.42 3.58 5.10	795 887 986	4.29 5.89 7.80	939 992 1081	6.44 8.30 10.6	1097 1092 1172	9.22 10.8 13.6	1214 1213 1250	11.7 13.7 16.5	1326 1340 1336	14.5 17.2 19.6	1517 1542 1542	20.2 24.0 27.2	1684 1711 1733	26.3 30.8 35.7	1843 1862 1886	32.9 38.0 43.6	2005 2007 2031	40.2 45.9 52.2
16500 19000 21500	1473 1696 1920	998 1120 1246	7.00 9.40 12.5	1095 1209 1325	10.3 13.3 16.7	1181 1288 1400	13.5 16.9 21.0	1261 1360 1469	16.8 20.5 25.1	1338 1430 1532	20.2 24.4 29.3	1411 1500 1594	23.8 28.3 33.6	1548 1625 1719	30.7 36.2 42.6	1715 1745 1829	38.9 44.3 51.5	1894 1883 1933	48.9 53.2 60.6	2052 2038 2044	59.0 63.7 69.9
24000 26500 29000 31500	2143 2366 2589 2812	1375 1505 1636 1768	16.3 21.0 26.6 33.1	1443 1566 1691 1818	20.8 25.6 31.4 38.2	1513 1630 1749 1871	25.7 31.0 37.0 44.0	1579 1692 1808 1926	30.4 36.4 43.1 50.6	1641 1750 1865 1979	35.0 41.4 48.9 57.0	1696 1805 1916 2029	39.4 46.4 54.4 63.1	1810 1907 2015	49.3 56.6 65.3	1920 2010 2107	59.3 67.5 76.6	2019 2109	69.2 78.6	2114	79.4

5	TA		36	5				Wheel of circun						rea: 13 HP = 1		t. <u>PM</u>) ³ 000)			= 14	40 RPN 90 RPN 570 RPN	N
0514		1"\$	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10	'SP	12	"SP	13'	"SP
CFM	ov	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP								
11000 14200 17400	807 1041 1276	605 703 805	2.95 4.39 6.30	735 817 909	5.23 7.25 9.70	872 918 1001	7.93 10.2 13.3	1010 1014 1085	11.2 13.3 16.9	1122 1128 1163	14.4 17.1 20.6	1230 1237 1242	18.0 21.1 24.4	1424 1423 1432	25.7 29.5 34.0	1603 1585 1597	34.3 38.3 43.9	1754 1739 1742	42.4 48.2 54.1	1826 1818 1813	46.6 53.7 59.6
20600 23800 27000	1511 1746 1980	917 1034 1154	8.84 12.2 16.4	1010 1113 1221	12.9 16.7 21.3	1092 1192 1294	16.9 21.3 26.6	1170 1262 1363	21.1 26.0 31.9	1245 1329 1423	25.5 30.8 37.2	1312 1396 1483	29.7 35.9 42.6	1443 1513 1599	38.5 45.6 53.9	1589 1628 1704	48.5 55.7 65.1	1748 1751 1804	60.4 66.9 76.4	1827 1817 1854	67.0 73.0 82.1
30200 33400 36600 39800	2215 2450 2684 2919	1275 1397 1520 1643	21.6 27.9 35.4 44.4	1335 1453 1573 1694	26.8 33.6 41.6 51.0	1396 1506 1620 1739	32.5 39.7 48.1 58.0	1465 1565 1671 1782	38.8 46.3 55.0 65.0	1523 1626 1728 1831	44.5 53.0 62.5 72.8	1575 1679 1781	50.1 59.4 69.6	1685 1777	62.6 72.5	1786	75.1				

S	TA		4(V	-	Wheel c circum						rea: 16 HP = 2		t. <u>PM</u>) ³ 000)			I = 13	27 RPN 43 RPN 685 RPN	1
CFM	ov	1"\$	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10	"SP	12	"SP	14"	'SP
CFIN	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP								
12000 16000 20000	723 964 1205	514 601 699	2.93 4.42 6.56	635 707 792	5.12 7.59 10.3	772 798 874	7.74 10.8 14.3	893 887 950	10.8 13.1 18.6	998 993 1022	13.9 16.8 22.0	1088 1092 1092	16.9 20.9 24.8	1249 1258 1258	23.3 28.9 33.7	1398 1405 1411	30.3 37.2 44.1	1542 1536 1547	37.9 45.7 54.3	1675 1651 1669	46.1 54.1 64.5
24000 28000 32000	1446 1687 1928	804 911 1018	9.46 13.2 17.8	881 982 1086	13.7 18.1 23.6	959 1047 1144	18.3 23.1 29.2	1028 1112 1201	23.1 28.6 35.0	1093 1176 1259	28.1 34.3 41.2	1154 1232 1316	33.1 39.9 47.8	1271 1338 1416	40.5 51.6 60.7	1404 1440 1508	49.0 61.0 74.0	1545 1543 1600	61.5 68.9 86.1	1670 1657 1684	73.7 79.8 94.9
36000 40000 44000 48000	2169 2410 2651 2892	1129 1241 1354 1467	23.7 30.9 39.6 50.0	1192 1298 1406 1516	30.1 37.8 47.1 57.9	1248 1351 1457 1563	36.6 45.0 55.0 66.3	1296 1398 1503 1608	42.6 52.0 62.9 75.0	1347 1444 1545 1649	49.2 59.0 70.4 83.5	1400 1489 1586	56.3 66.2 78.0	1497 1582 1669	70.5 81.8 94.2	1586 1669	85.1 97.7	1670	100		

5	TA		44			۷		Wheel o circum						rea: 20 HP = 3					I = 12	5 RPM 22 RPN 34 RPN	
CFM	ov	1"5	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10	"SP	12	"SP	14"	'SP
CFIN	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
14000 18400 22800	690 906 1123	455 524 601	3.36 4.89 7.00	569 624 690	5.78 8.67 11.4	699 709 768	9.16 11.9 16.1	807 802 837	12.7 15.0 20.5	899 903 907	16.2 19.9 23.9	982 987 984	19.9 24.4 27.9	1128 1139 1144	27.5 33.8 39.9	1271 1269 1275	36.2 43.3 51.0	1399 1383 1395	45.3 53.0 62.6	1521 1490 1504	55.6 63.1 74.3
27200 31600 36000	1340 1557 1773	686 772 859	9.88 13.5 18.0	759 838 923	14.7 19.0 24.4	834 904 977	20.1 25.0 30.6	898 967 1035	25.6 31.3 37.6	959 1021 1091	31.4 37.4 44.9	1016 1075 1142	36.1 44.3 52.1	1135 1176 1235	44.1 56.2 67.1	1275 1277 1323	57.6 65.2 80.8	1401 1392 1411	71.8 77.8 91.4	1507 1506 1502	84.7 93.9 102
40400 44800 49200 53600	1990 2207 2424 2640	948 1038 1128 1220	23.5 30.3 38.3 47.9	1007 1094 1181 1269	30.7 38.2 46.9 57.1	1059 1143 1229 1314	37.8 46.2 55.9 66.7	1107 1187 1271 1356	44.8 53.8 64.2 76.2	1160 1232 1311 1395	52.9 61.9 72.8 85.6	1210 1279 1352 1431	61.0 70.7 81.7 94.6	1299 1369 1435 1507	76.8 88.8 101 115	1383 1448 1516	94.1 107 121	1462 1521	110 125		

5	TA		49			١	Wheel c		l diame ference					rea: 24 HP = 6		t. <u>PM</u>) ³ 000)		Class		9 RPM 10 RPN 93 RPN	
CFM	ov	1"\$	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	8"	SP	10	"SP	12	"SP	14'	'SP
CFM	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
16000 22000 28000	650 894 1138	402 472 551	3.78 5.80 8.69	516 562 630	6.56 10.3 14.0	634 641 699	10.6 14.0 19.6	733 729 764	14.7 18.0 25.3	815 819 826	18.7 23.8 29.4	890 898 892	23.0 29.3 34.0	1026 1034 1037	31.9 40.3 48.3	1161 1152 1159	42.4 51.6 62.3	1276 1258 1268	53.3 63.5 76.3	1383 1357 1370	65.6 75.8 91.0
34000 40000 46000	1382 1626 1870	638 725 815	12.7 17.8 24.4	703 786 872	18.6 24.9 32.7	770 841 919	25.4 32.2 40.5	826 897 969	32.0 40.1 49.2	881 947 1018	39.4 47.8 58.3	933 994 1064	45.9 56.0 67.5	1034 1085 1147	55.5 72.6 86.1	1155 1169 1226	70.4 84.3 106	1271 1262 1298	88.2 96.9 120	1370 1367 1374	105 116 133
52000 58000 64000 70000	2114 2358 2602 2846	907 999 1093 1187	32.8 43.1 55.6 70.5	959 1048 1137 1228	42.0 53.3 66.4 82.1	1004 1091 1179 1267	51.0 63.5 77.9 94.5	1046 1131 1217 1305	60.0 73.7 89.3 107	1090 1168 1252 1338	69.7 83.5 100 119	1133 1207 1286 1370	79.8 94.2 111 131	1214 1287 1358	100 118 136	1287 1356	122 140	1359	144		

S	TA	1 =	54			V			diamet ference					rea: 30 HP = 1		t. <u>PM</u>) ³ 000)		Class	= 75 $ = 98$ $ = 12$	5 RPM	
CFM	ov	1"5	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	7"	SP	8"	SP	9'	SP	10	"SP
	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
20000 26000 32000	662 861 1060	366 418 474	4.70 6.74 9.32	465 501 550	8.10 12.0 15.6	574 575 615	13.2 16.2 22.3	662 660 674	18.2 21.7 27.6	737 740 734	23.3 28.4 32.2	804 810 807	28.4 34.9 39.7	866 875 877	33.8 41.4 48.4	928 934 934	39.7 48.1 56.0	984 989 991	45.4 54.8 64.0	1043 1037 1045	51.9 61.3 72.1
38000 44000 50000	1258 1457 1656	536 601 666	12.9 17.4 22.8	602 658 719	19.9 25.0 31.5	663 715 769	27.4 33.6 40.6	717 767 820	35.2 42.4 50.6	769 813 865	42.6 51.1 60.4	818 860 905	48.1 60.6 70.2	871 904 948	53.7 68.4 81.3	931 946 986	62.1 74.5 91.0	993 990 1023	72.3 80.6 99.6	1045 1042 1061	81.7 89.1 107
56000 62000 68000 74000	1854 2053 2252 2450	732 799 867 936	29.4 37.5 47.2 58.5	783 848 913 978	39.5 48.6 59.1 71.3	827 889 953 1017	49.1 59.3 71.4 84.4	871 928 989 1051	59.4 70.2 82.9 97.1	916 969 1024 1085	70.5 82.0 94.7 110	958 1009 1061 1117	82.0 94.2 108 123	995 1047 1099 1152	92.6 107 121 138	1031 1083 1135 1185	104 119 135 152	1068 1116 1167 1220	116 131 148 167	1104 1148 1198	128 144 162

5	TA	1 = (6(V	Wheel o			eter: 60 e: 15.71				rea: 36 HP = 1		t. <u>PM</u>) ³ 000)		Class	= 69 = 90 = 11		Λ
CFM	ov	1"\$	1"SP 2"SP RPM BHP RPM BHF				SP	4"	SP	5"	SP	6"	SP	7":	SP	8"	SP	9'	SP	10'	'SP
	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
24000 32000 40000	650 867 1084	328 379 435	5.61 8.28 11.8	420 454 503	9.72 14.9 19.6	519 520 560	15.9 19.9 27.8	598 596 613	21.9 26.6 35.0	664 669 668	27.8 34.8 40.7	728 732 730	34.4 42.8 49.3	783 792 792	40.8 51.1 59.9	840 844 847	48.0 59.0 70.0	893 893 898	55.1 67.2 79.8	944 937 946	62.8 75.0 89.8
48000 56000 64000	1301 1518 1734	497 561 625	16.8 23.1 30.8	554 610 673	25.4 32.6 42.1	609 661 714	35.0 43.4 53.2	657 707 759	44.6 54.5 66.0	703 749 800	54.6 65.7 78.7	748 789 837	62.3 77.5 91.2	793 828 873	69.0 88.8 105	840 864 907	77.4 97.2 118	894 903 941	89.4 105 131	948 942 975	103 113 142
72000 80000 88000 96000	1951 2168 2385 2602	691 757 825 893	40.5 52.3 66.5 83.3	736 799 864 929	53.4 66.3 81.7 99.5	774 837 900 963	65.6 80.7 97.6 117	811 870 931 995	78.4 94.2 113 134	850 904 962 1023	92.5 109 128 150	889 938 993 1051	107 124 144 167	922 974 1026 1079	121 141 162 185	955 1004 1056 1107	136 156 178 202	986 1034 1086 1137	151 171 196 221	1018 1063 1114	167 187 213

S	TA	1 =	66	5		V	Wheel o	Wheel circum	l diame ference					rea: 44 HP = 2		t. <u>PM</u>)³ 000)			1 = 82	0 RPM 4 RPM 34 RPN	Λ
СЕМ	ov	1"\$	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	7":	SP	8"	SP	9"	SP	10'	'SP
	00	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
30000 40000 50000	673 897 1121	304 351 405	7.09 10.4 15.2	383 417 464	12.1 18.5 24.7	472 477 517	19.7 25.5 35.1	544 541 565	27.1 32.6 44.9	606 609 610	34.6 43.2 51.8	662 666 661	42.5 52.9 60.4	712 718 718	50.5 62.9 73.4	760 768 770	58.8 73.1 86.4	809 811 818	67.8 82.9 99.3	858 854 860	77.5 93.4 111
60000 70000 80000	1345 1570 1794	463 523 584	21.6 29.9 40.1	514 568 626	32.4 41.9 54.3	563 611 663	44.2 55.0 68.1	606 654 703	56.3 69.1 83.7	647 692 739	68.8 83.1 99.1	687 727 772	79.7 97.4 115	725 763 805	87.9 112 132	765 795 836	96.8 124 149	813 828 867	110 134 166	860 860 896	126 144 180
90000 100000 110000 120000	2018 2242 2466 2691	646 709 772 836	52.9 68.5 87.3 110	686 746 807 868	68.9 86.2 106 130	720 779 839 899	84.4 104 126 151	753 809 867 927	100 121 145 173	787 838 894 953	118 138 164 194	821 870 921 977	136 158 183 214	852 900 949 1001	153 178 205 235	882 930 977 1027	172 198 226 258	910 955 1004	190 217 248	937 982 1030	209 237 270

S	TA		7	B		V	Vheel c			eter: 73 e: 19.11				rea: 54 HP = 4		t. <u>PM</u>) ³ 000)		Class I	= 57 = 74 = 93	• • • • • • •	
CFM	ov	1"\$	SP	2"	SP	3"	SP	4"	SP	5"	SP	6"	SP	7"	SP	8"	SP	9"	SP	10'	"SP
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
40000 51000 62000	734 936 1138	285 325 369	9.62 13.6 19.0	352 385 423	17.0 23.9 30.9	426 436 470	25.3 38.3 43.4	492 489 513	35.3 41.1 56.0	551 550 554	45.6 54.2 64.9	601 602 600	55.6 66.6 75.3	645 651 649	65.6 79.6 90.4	689 694 695	76.6 92.0 106	730 735 738	87.5 105 122	772 773 779	99.7 118 138
73000 84000 95000	1339 1541 1743	417 466 515	26.1 34.9 45.9	463 507 554	39.2 49.6 62.5	508 546 588	53.7 65.2 79.3	547 585 625	68.5 82.1 98.0	584 620 658	83.8 99.1 116	619 651 689	96.3 116 135	654 684 719	106 134 155	690 714 747	117 147 176	734 744 774	134 159 194	777 777 802	153 171 210
106000 117000 128000 139000	1945 2147 2349 2569	565 616 667 724	59.0 75.0 94.0 119	602 651 700 754	78.1 95.8 116 142	634 681 730 782	96.3 116 139 167	665 709 756 808	116 136 161 192	697 737 780 832	136 158 183 216	727 766 807 855	157 180 207 241	755 796 834 879	177 205 232 267	783 822 861 903	200 228 259 293	809 845 884 928	222 249 283 322	834 869 909	244 274 309

MATERIAL SPECIFICATIONS

0.	Sł	naft diamet	er		Bearings		W	/heel weigl	nt		Wheel WR ³	2
Size	Class I	Class II	Class III	Class I	Class II	Class III	Class I	Class II	Class III	Class I	Class II	Class III
12	1	1¾ 16	_	Α	F	—	8	8	_	2	2	_
15	1 ³ /16	1³⁄16	_	А	F	_	13	13	—	3	3	—
18	1 ³ /16	17⁄16	1 ¹¹ /16	А	F	F	32	32	47	11	11	14
22	17⁄16	1 ¹¹ /16	1 ¹¹ /16	С	F	F	46	46	60	24	24	28
24	1 ¹¹ /16	1 ¹¹ /16	1 ¹⁵ /16	С	F	F	61	61	90	38	38	49
27	$1^{11/16}$	$1^{11/16}$	1 ¹⁵ /16	E	F	F	72	72	102	55	55	69
30	$1^{11/16}$	$1^{15}/16$	2 ³ /16	Е	F	F	90	90	134	87	87	119
33	1 ¹⁵ /16	2 ³ /16	2³⁄16	Е	F	F	118	118	155	130	130	170
36	2 ³ /16	2 ³ /16	27⁄16	D	F	F	158	158	234	219	219	273
40	2 ³ /16	2 ³ /16	27⁄16	D	F	F	188	188	287	321	321	430
44	2 ³ /16	27⁄16	2 ¹¹ /16	D	F	F	248	259	334	523	523	628
49	27/16	2 ¹ 1⁄16	2 ¹⁵ /16	D	F	F	344	349	477	843	867	949
54	27/16	2 ¹¹ /16	37⁄16	D	F	F	411	418	653	1252	1291	1799
60	2716	2 ¹⁵ /16	3716	D	F	F	523	539	804	1926	1986	2850
66	2 ¹¹ /16	3716	37∕16	D	F	F	814	851	984	3715	3807	4271
73	2 ¹⁵ /16	37⁄16	3 ¹⁵ /16	D	F	F	1036	1069	1178	5872	5997	6310

Dimensions in inches. Weights in pounds. WR² in Ib.-ft.².

Bearing types: A-Link-Belt P3-U200. C-Sealmaster SPM. D-Sealmaster MPD. E-Link-Belt P-U300. F-Link-Belt P-B22400. nyb reserves the right to substitute bearings of equal ratings.

				APP	ROXIMA	TE BARE	FAN W	EIGHT				
		Class I			Class II			Class III				Arr. 4
Size	Arr. 9-M	Arr. 9-S, 9-V, 9-D	Arr. 9 Roof- mounted	Arr. 9-M	Arr. 9-S, 9-V, 9-D	Arr. 9 Roof- mounted	Arr. 9-M	Arr. 9-S, 9-V, 9-D	Arr. 9 Roof- mounted	Arr. 4-M	Arr. 4-S, 4-V, 4-D	Roof- mounted
12 15 18 22	134 183 259 361	124 170 248 349	148 208 302 425	140 187 271 385	130 174 260 373	154 212 314 449	- 280 390	- - 269 378	- - 323 454	112 148 227 331	102 135 216 319	126 173 270 395
24 27 30 33	484 604 757 936	464 575 711 883	564 698 887 1102	493 611 769 953	473 582 723 900	573 705 899 1119	503 623 804 978	483 594 758 925	583 717 934 1144	453 570 750 914	433 541 704 861	533 664 880 1080
36 40 44 49	1158 1470 1915 2372	1091 1390 1818 2257	1367 1721 2366 2813	1173 1461 1931 2395	1106 1381 1834 2280	1382 1712 2382 2836	1209 1542 2006 2412	1142 1462 1909 2297	1418 1793 2457 2853	1082 	1015 - - -	1291 - - -
54 60 66 73	3077 3722 4651 5746	2928 3555 4436 5466	3667 4471 5543 6819	3104 3775 4762 5836	2955 3608 4547 5556	3694 4524 5654 6909	3311 4065 4814 5953	3162 3898 4599 5673	3901 4814 5706 7026	 	_ _ _ _	- - - -

MOTOR SIZE CAPABILITY

	١A	rangement	Arrangement 4					
Size	Max.	Fram	e size	Min.	Max.			
	C-NW	Min.	Max.	frame size	frame size			
12	16.83	56	213T†	56	182T			
15	16.83	56	215T	143T	184T			
18	23.69	56	284T	143T	215T			
22	25.95	56	324T	143T	256T			
24	25.95	143T	326T	143T	286T			
27	27.93	145T	364T	145T	326T			
30	27.93	184T	365T	184T	365T			
33	34.15	213T	405T	213T	405T			
36	34.15	215T	405T	215T	405T			
40	34.15	254T	405T	—	—			
44	34.15	256T	405T	—	—			
49	34.15	286T	405T	—	—			
54	34.15	324T	405T	_				
60	34.15	326T	405T	_				
66	35.38	404T	445T	_				
73	35.38	444T	445T	_				

FLANGE OPTION

		50		Holes*					
Size	ID	BC	OD	No.	Dia.				
$ \begin{array}{c} 12\\ 15\\ 18\\ 22\\ 24\\ 27\\ 30\\ 33\\ 36\\ 40\\ 44\\ 49\\ 54\\ 60\\ 66\\ 73\\ \end{array} $	17 203/4 251/4 303/4 337/8 371/4 411/2 455/8 503/8 551/2 613/8 671/2 743/4 825/8 903/4 1003/8	18 ³ /4 22 ¹ /2 27 32 ¹ /2 36 ¹ /8 39 ¹ /2 43 ³ /4 4778 52 ⁵ /8 57 ³ /4 63 ⁵ /8 69 ³ /4 77 847/8 93 102 ⁵ /8	20 23 ³ / ₄ 33 ³ / ₄ 37 ⁷ / ₈ 41 ¹ / ₄ 45 ¹ / ₂ 49 ⁵ / ₈ 54 ³ / ₈ 59 ¹ / ₂ 65 ³ / ₈ 71 ¹ / ₂ 78 ³ / ₄ 86 ⁵ / ₈ 94 ³ / ₄ 104 ³ / ₈	8 16 16 16 16 16 24 24 24 24 24 32 32 32 32 32 32	9/16 9/16 9/16 9/16 9/16 9/16 9/16 9/16				

†184T max. explosion proof frame with weather cover.

*Holes spaced equally straddling centerline. All flanges are ½" thick. Tolerance: ±1/8"

DIMENSIONS

Dimensions should not be used for construction unless certified. See page 6 for available mounting positions. Note motor size capability on page 14. Tolerance: $\pm 1/8"$.

ARRANGEMENTS

4-V and 9-V

L[0D]

WW

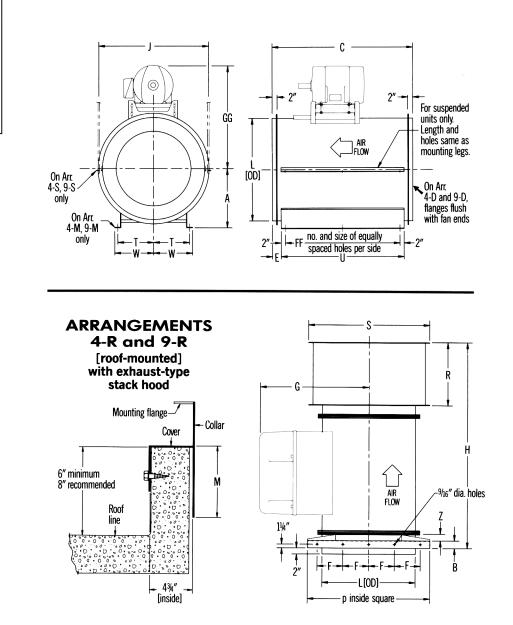
TT

FLOW

T.

GG

2″


Y-size of

slots

4 support brackets

per unit

ARRANGEMENTS 4-M and 9-M, 4-S and 9-S, 4-D and 9-D

DIMENSIONS [Inches]

Cine	Size A B	C		г	E	C.C.	c	GG	H										U		w				
JIZE		Arr. 4	Arr. 9	E	Г	FF	G	(max)	Arr. 4	Arr. 9	J	LM	M	P	R	S	I	TT	Arr. 4	rr. 4 Arr. 9		WW	¥	2	
12	11	2 ½	27	30¾	3½	5	2-%16	28	25%	48¾	49%	185%	16%	4 ½	26 ½	14	26¼	71//8	11½	20	23¾	8	123/4	%16 x1	2
15	13	2 ½	281/8	33¾	3¾	6	2-%16	32¾	31½	51%	55%	22%	205%	4 ½	30¼	16	30¼	83%	13½	20%	26¼	91⁄4	145%	%16 x1	2
18	15	2 ½	331/8	36¾	3¾	6½	2-%16	35	33%	58%	60%	27%	25½	4 1⁄2	34¾	18	341/2	93/8	15%	25%	29¼	101/4	16%	%16 x1	2
22	17	2 ½	39¾	44¼	3¾	81/ 2	2-%16	40¼	37%	68 ½	70¼	32%	305⁄/8	4 ½	40¼	21	40	10%	18%	32¼	36¾	11¾	19%	%16 x1	2
24	19	3	44 %	47	4 ¼	9	2-%16	41 ½	40¼	85%	861/8	36	337/8	5	43%	23	431/4	121/4	20%	35%	38 ½	131/2	221/4	3/4x11/2	3
27	22	3	49½	52½	4 ¼	10	2-%16	49 ½	43	88¾	891/8	39%	37¼	5	46¾	25	471/4	135/8	22 ¹ /2	41	44	14%	24	3/4x11/2	3
30	24	3	55 ¹ /8	56¾	4¼	11	3-3⁄4	52¼		100%		44%	41%	5	51	26	50¼	14%	24%	46%	48¼	161/8	261/8	3/4x11/2	3
33	26	3	61¼	62¼	4 ¼	12	3-¾	57%	49 ¹ /8	110½	108%	49	45½	5	55½	29	52¾	16	26%	52¾	53¾	17¼	281/8	34x11/2	3
36	29	3	63½	67½	4 ¼	13	3-3/4	60%	51%	108¾	1101/2	53¾	50¼	5	59%	31	59½	171/2	29	55	59	19	301/2	3/4x11/2	3
40	32	3	-	75¾	4 ½	14	3-¾	63%	54½	-	122%	58%	55%	5	65	34	645/8	19	31%	-	66¾	201/8	33 ¹ /8	3/4x11/2	3
44	35	3	-	80%	5	15½	3-¾	57%	59½	-	130%		61¼	5	70%	36	705/8	21	34½	-	705%	221/2	36	3⁄4x11⁄2	3
49	38	3	-	87%	6	17	3-¾	62¼	62½	-	1421/8	70%	67%	5	77	40	76%	23	37%	-	75%	24 ½	391/8	3⁄4x11⁄2	3
54	41	4	-	97	5¼	19	4-1	66%	65¾	-	1551/4	79½	745%	6	841/4	43	84	25	41%	_	86 ½	27	43%	1x2	3
60	45	4	-	107	5¾	20½	4-1	71½	69¾	-	169¼	87	821/2	6	921/8	47	91%	26 ¹ /2	45 ³ ⁄4	_	95 ¹ /2	28 ¹ /2	471/4	1x2	3
66	49	4	-	116¾	5¾	221/2	4-1	79¾	73¾	-	183	95½	905%	6	100¼	51	100	29	49¾	-	105 ¹ /4	311/2	51%	1x2	3
73	54	4	-	129%	6 5⁄/8	25	4-1	85	79	-	200%	104¾	100¼	6	109%	56	1095%	331/2	54%	-	116 ¹ /8	36	56 ¹ /8	1x2	3

The New York Blower Company has a policy of continual product improvement and reserves the right to change designs and specifications without notice.